

 An Esri

® White Paper • August 2009

ArcGIS® Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

Esri, 380 New York St., Redlands, CA 92373-8100 USA
TEL 909-793-2853 • FAX 909-793-5953 • E-MAIL info@esri.com • WEB www.esri.com

Copyright © 2009 Esri
All rights reserved.
Printed in the United States of America.

The information contained in this document is the exclusive property of Esri. This work is protected under United States
copyright law and other international copyright treaties and conventions. No part of this work may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any
information storage or retrieval system, except as expressly permitted in writing by Esri. All requests should be sent to
Attention: Contracts and Legal Services Manager, Esri, 380 New York Street, Redlands, CA 92373-8100 USA.

The information contained in this document is subject to change without notice.

Esri, the Esri globe logo, ArcGIS, ArcSDE, ArcMap, ArcInfo, ModelBuilder, ADF, www.esri.com, and @esri.com are
trademarks, registered trademarks, or service marks of Esri in the United States, the European Community, or certain other
jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective
trademark owners.

http://www.esri.com/

J-9804

Esri White Paper i

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping
Application for Municipal/Local
Government

An Esri White Paper

Contents Page

About the ArcGIS Server in Practice Series ... 1

Introduction... 1

Use Case Requirements .. 2

User Workflow.. 2

GIS Datasets.. 4

Solution Architecture .. 4

Server Configuration... 4
Physical Hardware .. 5

Data Publication Planning... 5
Web Services .. 7

Riverside Street Map Map Service ... 8
Imagery Basemap Map Service .. 15
Utilities Map Service .. 16
U.S. Street Geocoding Service.. 19
Geometry: Map and Geometry Service 21

Web Application Development... 24

ArcGIS Server Solution Assessment .. 26

Summary ... 28

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 ii

Contents Page

Appendixes

Appendix A: Riverside Viewer Web Mapping Application and
 User Workflow.. 29

Appendix B: GIS Datasets for the City of Riverside, California.......... 40

Appendix C: Riverside Street Map—Scale Cache Levels.................... 42

Appendix D: The Geoprocessing Service... 47

Appendix E: Map Queries and the Geometry Service.......................... 50

Appendix F: Testing Methodology and Definitions 56

J-9804

Esri White Paper

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping
Application for Municipal/Local
Government

About the ArcGIS
Server in Practice

Series

The ArcGIS Server in Practice series provides practical information for
the configuration and implementation of ArcGIS® Server solutions.
Documents in this series explore common and well-defined user
workflows and system configurations. They provide example use cases for
describing ArcGIS Server best practices. The emphasis of this series is to
examine use cases from a holistic point of view and provide useful
information enabling users to understand how to optimally configure and
implement ArcGIS Server for real-world applications.

Introduction The scenario in this document is for a medium-sized city with a population of
approximately 300,000 and a geographic area of approximately 80 square miles that
wants to build a Web mapping application. It combines geographic information, such as
cadastral maps, utility networks, and imagery, from different municipal/local government
departments. The intent is to provide an intuitive Web browser-based application for
performing common spatial analysis tasks (locating addresses, creating proximity reports,
inspecting the status of different assets, etc.) that is accessible to all city government
personnel.

This document guides users through the process of building such a Web mapping
application and its supporting Web services. The primary objective is to illustrate best
practices and focus on some of the key decisions that were made to effectively support
the business requirements of the scenario described above. To keep the document within
a limited scope, a typical ArcGIS Server Standard Workgroup deployment is used.1 This
deployment configuration also helps achieve the secondary objective of providing some
practical information on the support capacity (e.g., number of supported users) for
scalability of a typical ArcGIS Server Workgroup system.

This document covers the following:

 Use case requirements
 GIS datasets

1
 ArcGIS Server Workgroup deployments are limited to a single machine hosting the Web server, GIS
application server, and database server tiers.

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 2

 Solution architecture

● Server configuration
● Data publication planning
● Web services
● Web application development

 ArcGIS Server solution assessment

Use Case Requirements describes the general Web mapping application and the typical
user workflow interaction with it. GIS Datasets provides an overview of the geographic
information system (GIS) data used in the Web application. The Solution Architecture
section is divided into several subsections: Server Configuration, Data Publication
Planning, Web Services, and Web Application Development. Each subsection discusses
the setup, development, and implementation of the major components of the ArcGIS
Server solution for the scenario. Throughout the Solution Architecture section, there is an
emphasis on the reasoning behind implementation decisions, the efficient design of Web
services, and the optimization of the Web application for scalability. In the ArcGIS
Server Solution Assessment section, a general assessment of the overall system
performance is discussed. The document concludes with a summary of the ArcGIS
Server solution provided for the scenario.

The target audiences for this document are beginning to intermediate users with an
understanding of fundamental ArcGIS Server concepts. Note that some of the
functionality implemented in the final Web mapping application (such as in the reporting
task appendixes) is more appropriate for advanced users.

Use Case
Requirements

User Workflow The Web mapping application is named Riverside Viewer. It is a simple, easy-to-use map

viewer that includes some basic spatial analysis functions commonly found in
municipal/local government workflows, including mapping, geocoding, search
capabilities, and reporting. The Web application will be used by all city government
personnel—approximately 60 people with varying levels of GIS analysis skills—so its
design needs to be simple and intuitive (see figure 1).

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 1
Riverside Viewer Web Mapping Application—Default Appearance

when Initially Loaded in a Web Browser

The Web application controls are located in the upper left corner. Drop-down menus
appear when the cursor is paused on one of the four control icons: Map, Navigation,
Tools, and Help. There is also a map view scale selector bar. Additional control windows
may appear in the display (typically in the upper right corner) depending on the
functionality selected. An example user workflow for the Web application is described in
table 1.

Table 1
Example Web Application User Workflow

Step Action

1 Start the application at its default extent: overview of the city of Riverside
with the street map displayed.

2 Geocode an address (e.g., 3090 Rice Road); center the map on the candidate
result.

3 Switch the basemap to imagery, then switch back to street map.
4 Retrieve further details on the parcel at the address by identifying it.
5 Find a parcel by its Assessor Property Number (APN) (e.g., 218181018)

and zoom to it.

Esri White Paper 3

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 4

Step Action
6 Create a report of all properties within 300 feet of the parcel.
7 Find a school by its name (e.g., Riverside City College) and zoom to it.
8 Turn on the utilities dynamic layer.
9 Turn off the meters layer and refresh the map display.

10 Find a parcel by its APN and zoom to it.
11 Turn on the meters layer.
12 Find an electrical pole by its SynergenID and zoom to it.
13 Zoom to the full extent and close the application.

For more details on the Riverside Viewer Web mapping application and screen captures
of the example user workflow, see appendix A.

GIS Datasets GIS data for the city of Riverside, California, was used in this scenario. The city of
Riverside has a population of 311,575 people and covers an area of approximately
80 square miles. Its GIS database contains over 60 different types of data including
vector, imagery, utility networks, and annotation data, totaling 12.5 GB. A high-level
summary of the GIS data content used for the Web mapping application is listed in
table 2. For further details, see appendix B.

Table 2
GIS Datasets for the City of Riverside, California

Dataset Name Dataset Type Size

Addresses Point 84,213 records
Schools Polygon 87 records
Buildings Polygon 105,562 records
Electric poles Point 4,559 records
Parcels Polygon 79,663 records
Aerial imagery Raster 59 MrSID files
Various text Annotation Over 100,000 records

Solution

Architecture
This section of the document discusses the hardware setup, planning, and implementation
of the various components of the ArcGIS Server solution for this municipal/local
government scenario.

Server Configuration As mentioned previously, a typical ArcGIS Server Standard Workgroup deployment is
used for this scenario—in other words, a single four-core server machine deployment of
ArcGIS Server that includes the Web server, server object manager (SOM), server object
container (SOC), and database tier. Two geodatabases were used to support the Web
application's various services: a Workgroup ArcSDE® geodatabase contained the
electrical network data, and a file geodatabase held the remainder of the GIS datasets (for
details, see appendix B).

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Physical Hardware Two machines were used for this use case. One represents the publication server and
hosts the entire ArcGIS Server deployment. The other represents the client and was used
to simulate user load, as well as monitor different key indicators of the ArcGIS Server
instance.2 Both are connected on a network with a 1,000-megabit throughput capacity.
Table 3 summarizes the physical hardware of the ArcGIS Server solution.

Table 3
General Information on the Physical Hardware

 Hardware Software

Client

CPU: 1 Intel XEON, 3.6 GHz
Memory: 2 GB
Disk: SATA, 120 GB, 10K rpm

Windows XP
Visual Studio 2008

Test Team

Network

1,000 megabit Not applicable

Server

CPU: 2 Intel XEON, 3.0 GHz
Dual Core
Memory: 16 GB
Disk: Dual SATA, 146 GB, 10K
rpm
RAID: 1

Windows 2003
SQL Server Express 2008
ArcGIS Server Workgroup

Data Publication

Planning
One of the first steps in designing an ArcGIS Server solution is to carefully examine and
assess the purpose(s) of the GIS data that will be used in the Web mapping application.
The GIS data should be classified into two groups: operational data and basemap data.3
Operational data will be actively used in the Web application, for example, feature
classes that will be edited or queried by Web users. Basemap data will primarily be used
as referential background in the Web application. In other words, basemap data is present
within the application to support the operational data.

Properly assigning GIS data into the two groups is important, because it affects the
usability of the Web application and its performance. In general, basemap data should be
implemented as cached map services, because the data will change either infrequently or
not at all. In contrast, operational data may need to be implemented as dynamic map
services because users might require additional capabilities (the ability to toggle between

2
 For more information on how the ArcGIS Server system was monitored, see appendix F.

3
 The two group terms are also sometimes referred to as operational layers and base layers, respectively, in
ArcGIS Server documentation, but they have the same overall meaning. More information can be found in the
ArcGIS Desktop Help topic Steps for implementing GIS map applications.

Esri White Paper 5

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

data layers, dynamic labeling, etc.) in the Web application. In addition, the operational
data may change too frequently to achieve effective cache updates.

A good Web application design strategy is to minimize the amount of information shown
via dynamic map services. Their use involves live queries applied to the geodatabase,
potentially adding extra overhead to the ArcGIS Server solution. It is strongly
recommended that users cache information as much as possible in the Web application to
optimize the use of the hardware resources.

Tip 1: Use cached map services for serving GIS data with ArcGIS Server whenever
possible. They yield better performance and put less load on the server compared to
dynamic map services.

For this scenario, most of the city of Riverside, California, GIS data was implemented as
cached map services to optimize performance in the Riverside Viewer Web mapping
application. The exception is the electrical network data (referenced by the Utilities map),
which is used as operational data in the Web application. Details about individual
services are described later in the document. Three map documents (i.e., Street, Aerial
Imagery, and Utilities) are used in the Web application and shown in figures 2 through 4;
they are the published resources behind the ArcGIS Server map services.

Figure 2
Street Map at 1:80,000 Scale

August 2009 6

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 3
Aerial Imagery Map at 1:2,000 Scale

Figure 4
Utilities over Street Map at 1:1,000 Scale

Web Services Several GIS Web services were created to satisfy the mapping and querying requirements
of the example user workflow described earlier. Based on the available GIS datasets, five
different Web services were created to support the Web mapping application. Three of
them are map services, one is a geocoding service, and one is a geometry service (see
table 4). Each Web service is described in detail, including some discussions explaining
why certain configuration properties were implemented, and some best practices are
highlighted to help optimize the ArcGIS Server system.

Esri White Paper 7

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 8

Table 4
List of Web Services

Web Service Name Type of Service Purpose

Riverside Street Map Map (cached) Main basemap in the application
and queries to Parcels feature
class

Imagery Basemap Map (cached) Provides background imagery
Utilities Map (optimized dynamic) Shows detailed electrical

information and queries to
elements in the geometric
network

U.S. Street Geocoding Finds addresses
Geometry Geometry Supports report generation

functionality

Riverside Street Map
Map Service

This map service is the main basemap for the Riverside Viewer Web mapping
application. It is used for referencing information such as neighborhoods, transportation
routes, and city features (e.g., parks, schools, and other landmarks) at large scales. It also
provides detailed information on streets, parcels, and house numbers at smaller, more
detailed scales.

Several key datasets for the city of Riverside were collected and symbolized as a
cartographic basemap (named Riverside_BaseMap) in ArcMap™. Best practices for
designing maps for optimal performance were followed.4 Examples include optimizing
the map content, map symbols, and text and labels. For Riverside_BaseMap, annotations
were used extensively instead of dynamic text. This accelerates display response times
and ensures the best text placement possible. In terms of display performance, on
average, refreshing the map in ArcMap was accomplished in the subsecond range.
Refreshing at larger scales, such as 1:500 and 1:2,000, yielded faster response times—
approximately 0.2 seconds—over smaller scales, like 1:25,000, which took
approximately 1 second.

Even though Riverside_BaseMap was designed for optimal performance, when the map
service was created, it was cached5 (instead of being a dynamic map), because the
information it contained is relatively static. The cartographic optimizations helped reduce
the amount of time needed to create and update the cache tiles. In general, using cached
map services helps increase the capacity of the server under heavy loads.

4
 More information can be found in the ArcGIS Desktop Help topic An overview of designing maps for optimal
performance.

5
 More information on map caching can be found in the ArcGIS Server Help topic What is map caching?

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

To verify and confirm that caching is a better option than using a dynamic map service in
this specific case, a small test framework was set up. The test compared the performance
of both choices (i.e., cached versus dynamic). A user6 load was simulated and applied
against the two different types of services by defining a simple map navigation workflow
(e.g., panning and zooming) with a six-second think time between map interactions.
Figure 5 summarizes the test framework results. It compares the response times of the
Riverside_BaseMap map services (cached in red versus dynamic in blue) as the number
of users accessing the service increases.

Notice that the chart also contains a third test result (green line). Two different versions
of the Riverside_BaseMap dynamic map service were tested. One was based on an
ArcMap document (.mxd file), and the other was based on a map service definition
(.msd) file. ArcGIS Server 9.3 can only create dynamic map services using .mxd files,
whereas ArcGIS Server 9.3.1 introduces the concept of optimized map services,
configured with a new type of file (.msd files) for dynamic map services. Optimized map
services will be discussed later in the document.7

Figure 5
Test Framework Summary—Cached Map Service vs. Dynamic Map Service

Map Service (.mxd based)

Map Service (.msd based)

Cached Map Service

6
 In this document, a user is defined as an intelligent consumer of data services within an Internet application
requiring a pause between interactions to decide if further interaction is needed. The pause between user
interactions is described as think time.

7
 A more detailed discussion on optimized map services can be found under the Utilities Map Service
subsection in this document (see page 18).

Esri White Paper 9

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 10

A threshold response time of two seconds was set, which is the maximum response time
considered to be acceptable for this basemap. Observe that when the dynamic map
service based on the .mxd file was accessed by 36 or more users, its response time
increased dramatically beyond the two-second threshold. The optimized map service
(based on the .msd file) yielded better throughput, enabling support for 10 additional
users (bringing the total to 46 users) under the response time threshold. Conversely, the
cached map service response time remained constant throughout the test, despite the
increase in users. It could serve 50 or more concurrent users with a consistent response
time of less than half a second. While not shown in figure 5, up to 150 concurrent users
were simulated in the test framework, and the response time was still in the subsecond
range. The results from the test framework confirm that a cached map service is the best
option for publishing the Riverside_BaseMap map document.

It is important to note that since cached maps do not generate map images at run time
(assuming on-demand caching is not being used), using a cached map enables the ArcGIS
Server administrator to reduce the number of map instances on the server. This, in turn,
frees up memory consumption in the SOC. Since cached map services typically use
minimal CPU resources, they allow other services to take advantage of the available
server hardware resources, even under heavy load.

Special considerations must be taken into account when authoring a map document that
will be cached.8 In a dynamic map service, the end user can zoom to any scale. In a
cached map service, the number of scales is predefined. The approach for defining the
preset map scales for a cached map service is to determine which map scales are needed
by the business requirements of the Web mapping application. It is a good idea to take
this into account early in the design process when creating cached map services for
ArcGIS Server.

One of the Web application's requirements is that it must display information from a
citywide level down to 1:500, the scale where detailed information for streets and parcels
can be displayed. A strategy for defining map scales is to double the minimum map scale
incrementally until the maximum map scale needed is reached, for example, 1:500 →
1:1,000 → 1:2,000 → 1:4,000, and so on, up to the citywide scale, approximately
1:250,000.9 Since the Riverside_BaseMap map document will only be used at the scales
defined in the map cache schema, it was authored in ArcMap at the specific scale cache
levels. The intent is to ensure that the map will display at its best for each scale in the
cache (see figure 6). Appendix C contains screen shots of the different scale cache levels
for Riverside_BaseMap.

8
 More information on map caching requirements can be found in the ArcGIS Server Help topic Tips and best
practices for map caches > Preparing the map document.

9
 The maximum map scale (i.e., citywide level) for the city of Riverside was determined by viewing the
citywide boundary of the data in ArcMap and noting the map scale displayed.

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 6
Editing the Map Document at the Specific Cache Levels

The following scale cache levels for the Riverside_BaseMap map service were used:

 1:250,000 1:8,000
 1:125,000 1:4,000
 1:64,000 1:2,000
 1:32,000 1:1,000
 1:16,000 1:500

Caching the entire Riverside_BaseMap map took approximately 18 minutes for this
ArcGIS Server environment (see earlier sections for configuration specifics). This is a
relatively short amount of time to build a cache, which allows frequent and easy cache
updates. Map server instances for the Riverside Street Map map service were changed
from two to four, because the ArcGIS Server environment had four cores. Map caching is
very CPU intensive and generally does not benefit from having much more than one map
instance per CPU core while generating the cache. The actual number that generates the
most tiles per hour is 5n/4, where n is the number of CPU cores (e.g., 5 instances for a
four-core machine, 10 instances for an eight-core machine). If a caching system
configured with 5n/4 instances appears to be underutilizing CPU resources, it is likely
due to disk or network I/O bottlenecks.

Note that the 18 minutes used to create the map cache is the time it took to cache all the
geography within the full extent of the map and at all cache levels.

Tip 2: In general, avoid caching areas in the map that will not be used. This will not only
save disk space, but more importantly, it will help expedite the map cache building
process (i.e., make it much faster).

The highlighted blue area in the map in figure 7 shows the area of interest for the
Riverside Viewer Web mapping application. It is anticipated that users of the Web
application will only navigate the map within this area and not beyond the city limits.

Esri White Paper 11

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Figure 7
City Boundary for the City of Riverside, California

Observe that approximately half of the map area (at its full extent) lies outside the city.
Therefore, the city's boundary can be used to constrain the spatial extent of the map
caching process. This is achieved by inputting the city of Riverside boundary feature
class into the Manage Map Server Cache Tiles geoprocessing tool10 as shown in figure 8.

10 More information on the Manage Map Server Cache Tiles tool can be found in the ArcGIS Desktop Help

topic Manage Map Server Cache Tiles (Server).

August 2009 12

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 8
Manage Map Server Cache Tiles Geoprocessing Tool Dialog Box

To validate the theory that caching a subset of the map (i.e., the city boundary extent)
versus the entire map is optimal, another small test was performed. Two different map
caches were generated for the Riverside_BaseMap map service—one cache of the city
boundary extent and another cache of the entire map extent.

Figure 9 compares the number of tiles created when caching the entire map (green bars)
versus building a partial cache of the map that is relevant to the city (purple bars). The
number of tiles is the same at small scales (e.g., levels 0, 1, 2, 3, 4), but the partial map
cache is significantly smaller at higher levels. When a cache is built for the entire map,
essentially map tiles at 1:500 scale are generated for areas that are outside the city
boundary and do not show any relevant data for the Riverside Viewer Web application.

Esri White Paper 13

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Figure 9
Comparison between Cache for the Entire Map

vs. Cache for the City Boundary

For this specific case, the number of map tiles was reduced from over 200,000 tiles to
approximately 90,000. The advantages of reducing the number of tiles in the cache are
less use of disk space and shortened processing time when creating the map cache. The
time to create the map cache was reduced by almost 50 percent, from approximately
18 minutes (full cache) to 10 minutes (partial cache).

When building a partial cache, on-demand caching can be used for areas in the map
where a cache has not been created; it ensures that map tiles will be created at run time if
a user visits that area. An alternative option is to display a Data not available tile for
empty cache areas. In some cases, configuring the service to return a Data not available
tile may yield a better user experience than returning a blank map display.11 The Data not
available option was selected for this cache.

Tip 3: Esri recommends being conservative when building partial caches. Users should
benefit performance-wise from the map cache in most instances and trigger on-demand
caching rarely or never. When visiting areas that have not been cached, users will
suddenly notice that the map navigation becomes slightly sluggish, as the map tiles are
created on the fly.

11 More information on selecting the appropriate option for partial caches can be found in the ArcGIS Server

Help topic Common caching questions.

August 2009 14

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 15

Recall that map cache images can use one of two image format types: JPEG or PNG. The
former is ideal for raster-based basemaps with a lot of color variation, such as imagery,
while the latter should be used for basemaps with a few simple colors. PNG is the map
tile image format selected for this service. A small holistic trial and error test between
PNG 8 versus PNG 32 was performed to determine the ideal bit depth per channel. A
representative map tile of an urban downtown housing area in the map was sampled;
PNG 8 used 16 KB of storage, while PNG 32 used 32 KB of storage. PNG 8 was selected
because it yielded quality images and the smallest map tile size.12

One administrative side note: Whenever the underlying data changes for a cache, the
cache will need to be updated. The process of updating map caches can be automated
using ArcGIS geoprocessing tools. When the cache update runs, the server will mostly be
dedicated to creating the cache tiles.13 In this case, since the ArcGIS Server system is on
a single machine, the cache update can be scheduled to occur at night or during the
weekend (i.e., during a time period where few or no users are accessing the Web
application). Alternatively, a second machine can be configured for the purpose of
updating the cache. Typically, this extra machine would run on a staging deployment to
ensure uninterrupted service.

Imagery Basemap
Map Service

This data is also used for referencing information in the Riverside Viewer Web mapping
application. However, it is published separately from the Street Map service to enable
users to switch between the street map and image data. By building two separate map
services (i.e., Street Map and Imagery Basemap), Web application users can easily toggle
between the two reference data basemaps. The Imagery Basemap map service could also
be used as a backdrop for other Web applications.

Another advantage of this implementation approach is the optimization of the map cache
format. If data from both the Street Map and Imagery Basemap services was combined, a
PNG 32 map tile image format would be needed. This would generate larger image map
tiles. Alternatively, if a JPEG map tile image format was selected, the vector and
annotation data would likely not be of high enough quality for use in the Web
application.

Tip 4: Imagery map caches should be separate from vector data map caches. Do not
combine imagery and text data within the same cache; instead, create one cache for
imagery and a separate cache for text (e.g., annotation).

To optimize performance, the imagery was cached following guidelines similar to those
described for the Riverside Street Map map service—in other words, using the same scale
cache levels, only caching within the city boundary, and using Data not available map
tiles for areas outside the city boundary. The major difference is that JPEG was used as
the map tile image format, because it is recommended for imagery and generated map
tiles that were four to five times smaller in size than PNG 32. Building the map cache for
the Imagery Basemap took approximately 1 hour and 38 minutes.

12

 More information on selecting the appropriate image format for caches can be found in the ArcGIS Server
Help topic Choosing cache properties.

13
 More information about automating cache updates can be found in the ArcGIS Server Help topic Automating
cache creation and updates with geoprocessing.

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 16

Table 5 summarizes the map cache format choices made for the two map services
previously discussed.

Table 5
Summary of Map Caches Built for the Riverside Viewer Web Application

Web Service Type of
Service

Image
Format Tile Size Explanation

Riverside Street Map Map PNG 8 ~16 KB Ideal for basemaps with
few colors (exactly 256);
yielded quality images with
small tile size

Imagery Basemap Map JPEG ~200 KB Ideal for raster-based maps
with lots of color variation

Utilities Map Service The Riverside_Electric map contains over 10 different layers such as poles, switches,

bridges, transmission lines, meters, and so forth. One requirement of the Riverside
Viewer Web mapping application is that users should be able to toggle and access content
between these data layers as needed for their business requirements. Within a cached map
service, data layers cannot be toggled, since all the map contents are aggregated (i.e.,
fused) into the map tiles. Another requirement is that specific assets in the map (e.g.,
poles and meters) must always be displayed in the map, along with text showing their
unique identifier values. Because of these requirements, this map service is configured as
a dynamic map service.

Another benefit of using a dynamic map service is that all the information is
displayed/accessed live from the geodatabase. Changes to the source data are
immediately visible when the map is next refreshed in the Web application. This is
significant because utility network data is frequently updated. Figure 10 shows the
Utilities dynamic map service as it appears in ArcMap.

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 10
Utilities Dynamic Map Service

Dynamic map services require careful planning, because they can stress resources on the
SOCs and the geodatabase. Dynamic map services should typically only be used for
operational layers in an ArcGIS Server Web application. As a general rule, dynamic map
services should be used sparingly and only when business needs require their use. Keep
their data content minimal. Applying scale dependencies is also strongly recommended
for dynamic map services. These help control the number of features rendered at a given
scale (e.g., only display features that make sense from a cartographic perspective), and
therefore help accelerate rendering in the Web application.

Since the basemaps (Riverside Street Map and Imagery Basemap) are separate from the
utility network information, the dynamic map service is quite simple. This is one of the
most important decisions that impacts the performance and scalability of the Riverside
Viewer Web application: by carefully separating the Web application content into cached
and dynamic services, the effort needed to properly tune the Utilities dynamic map
service is reduced.

Tip 5: If the same data can be contained in a cached map service or a dynamic map
service, place it in a cached service—this is optimal. Avoid data duplication between
cached map and dynamic map services.

Esri White Paper 17

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 18

It is strongly recommended that users tune dynamic map services as much as possible.14
ArcGIS Server has the ability to render many maps concurrently, but the speed of
rendering a map document is partly determined by how well it has been optimized for
publication. If a map document has not been properly tuned before it is published, it will
affect the performance and scalability of the entire ArcGIS Server system.

In this case, the Utilities map document was refined and adjusted to make it as optimal as
possible until consistent subsecond map refresh response times were obtained. The most
significant impact for optimizing a dynamic map service is to keep its contents simple
(e.g., by offloading content to cached map services). Other aspects that can affect
performance include building spatial indexes on the data, keeping geodatabase statistics
up-to-date on the individual feature classes, using scale dependency, and minimizing
dynamic labeling.

ArcGIS Desktop 9.3.1 introduces a new Map Service Publishing toolbar in ArcMap that
helps properly tune map documents for publication in ArcGIS Server.15 The Analyze
option on this toolbar will loop through all the layers in a map document, identify any
possible issues, and suggest tips to optimize the map's performance in ArcGIS Server.
Once potential issues are resolved, the map document can be exported to a map service
definition (.msd) file. ArcGIS Server dynamic map services created from .msd files are
known as optimized map services.

Tip 6: When possible, publish dynamic map services using map service definition (.msd)
files. They are known as optimized map services and provide superior throughput.

Recall that earlier, in figure 5, a performance comparison chart between a dynamic map
service based on an .mxd file and a dynamic map service based on an .msd file was
shown. The optimized map service (based on the .msd file) consistently yielded faster
response times as user count increased. Optimized map services perform better than
.mxd-based dynamic map services. Therefore, the Utilities map document was
implemented as an optimized map service based on an .msd file. A small test that
simulated user load was applied to the service. Figure 11 shows its response time
performance as the user count increases.

14

 More information on tuning dynamic map services can be found in the ArcGIS Server Help topic Map
authoring considerations for ArcGIS Server.

15
 More information on the new Map Service Publishing toolbar can be found in the ArcGIS Desktop Help
topic Publishing optimized map services.

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Figure 11
Response Time of the Utilities Optimized Map Service

Again, a threshold response time of two seconds was set as the maximum acceptable
response time for the service. The Utilities optimized map service has very good
throughput. It yields response times consistently below half a second for up to 21 users
and below one second for up to 36 users and remains under the acceptable two-second
threshold until reaching approximately 46 users.

At this point, all three map services are now defined to support the requirements of the
scenario. All three can be combined in different ways in the final Riverside Viewer Web
mapping application. It is important to highlight that these map services serve a dual
function: they are the building blocks of the maps displayed in the Web application and
help provide the Web application's query capabilities. With map queries, additional
information on the data participating in the map services can be found, such as locating a
specific parcel, street, or meter.

U.S. Street Geocoding
Service

The fourth Web service used in the Riverside Viewer Web mapping application is a
geocoding service. This service satisfies the user workflow of being able to find an
address in the city. A U.S. street address style (i.e., a house number followed by the street
name) is used to define the address structure for the address locator.16 Two feature
classes in the available city of Riverside GIS dataset could potentially be used as
reference data for the locator: Addresses, a point feature class with all the city addresses,
and Streets, a line feature class with address information. The feature classes are shown
in figures 12 and 13, respectively.

16

 More information on address locators can be found in the ArcGIS Desktop Help topic Definition of the
address locator.

Esri White Paper 19

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Figure 12
Sample Addresses of the Addresses Point Feature Class

Figure 13
Sample Addresses of the Streets Line Feature Class

To determine which of the two feature classes should be used as the reference dataset for
the address locator in the geocoding service, two separate locators were built (one for
each feature class) and compared in terms of their relative performance in ArcGIS Server.

In this case, the performance of the two geocoding services was assessed in terms of
thread

17 count. This means performance was measured in terms of raw throughput
numbers and not in terms of a simulated user load on the services. This is a different type
of performance measurement and is designed to gauge performance differences between
services. It is not a user capacity measure of the services. Therefore, the results in

17

 In this document, a thread is defined as a consumer of data services within an Internet application that
requires no pause (i.e., think time) between interactions to decide if further interaction is needed.

August 2009 20

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

figure 14 are not directly comparable with the results shown earlier in figures 5 and 11,
which assessed performance in terms of number of users (i.e., capacity assessment).

The maximum number of locator service instances was set to two, to minimize the
consumption of server resources while ensuring acceptable throughput. Figure 14
illustrates the geocoding throughput response time results of the two address locators.

Figure 14
Comparison of Geocoding Throughput Results between the Point and Line Locators

Observe that both address locators generate response times of under 0.2 seconds, which is
great performance. The point feature class-based locator yielded better geocoding
throughput results overall when compared with the line feature class-based locator in
terms of average response time as the thread count increased. The point-based locator
yielded a peak throughput of approximately 279,944 geocoded addresses per hour, while
the line-based locator yielded a peak throughput of approximately 230,313 geocoded
addresses per hour. This suggests that the point feature class-based locator would likely,
on average, have less impact on the overall ArcGIS Server system.

Geometry: Map and
Geometry Service

The geometry service helps support the reporting tool in the Riverside Viewer Web
mapping application. It enables users to enter the Assessor Property Number (APN) of a
city parcel and retrieve a list of all parcels within 300 feet of the selected parcel. This is a
very common task performed in municipal/local government. An example use case for
this operational task is the creation of a notification list after a land-use change is
proposed for a property.

Esri White Paper 21

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

There are two possible approaches to incorporate this functionality into the Web
application: (1) using a geoprocessing service or (2) with a combination of map queries
and a geometry service (available since the 9.3 release). Both options are discussed and
their relative performance compared.

For the first approach, a geoprocessing service enables geoprocessing models authored
with ArcGIS Desktop to be published as Web resources that can be used by Web
applications. Geoprocessing in ArcGIS is a very powerful framework for developing
sophisticated workflows for geographic analysis.18 Tasks are created by publishing
geoprocessing toolboxes or map documents containing tool layers. They execute on the
server using resources on the server computer.19

In this case, a model named SelectSurroundingParcelsStdAlone was created in
ModelBuilder™ (see figure 15), then published as a stand-alone toolbox. Its execution
mode was set to synchronous, because the job sent to the server is short in duration. The
model takes an input APN value, extracts the requested parcel from the Parcels data
layer, selects the surrounding parcels that are within 300 feet around it with a buffer, and
finally exposes them as a FeatureRecordSetLayer parameter. It also renders the result set
in the map display. Appendix D contains a detailed explanation of the
SelectSurroundingParcelsStdAlone model and how it works.

Figure 15
SelectSurroundingParcelsStdAlone Geoprocessing Model

18

 More information on geoprocessing in ArcGIS can be found in the ArcGIS Desktop Help topic What is
geoprocessing?

19
 More information on geoprocessing services can be found in the ArcGIS Server Help topic An overview of
geoprocessing with ArcGIS Server.

August 2009 22

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

The alternative approach consists of using the query capabilities of the Riverside Street
Map map service to query the parcels layer along with a geometry service. In this type of
workflow, the Riverside Viewer Web mapping application is responsible for cascading
the client requests:

1. Search a parcel by its APN and return its geometry using the query capabilities of the

Riverside Street Map map service.

2. Buffer the selected parcel to a distance of 300 feet with the geometry service.

3. Use the buffered geometry to spatially query the parcels layer again and return all

parcels that intersect the buffered area.

4. Render the result set in the map display.

Appendix E contains more detailed information on implementing this approach.

Both approaches to enabling the reporting task functionality in the Riverside Viewer Web
mapping application were implemented and compared. To determine which was better,
performance between the two approaches was measured in terms of throughput. Similar
to the comparison test between the two geocoding services in figure 14, the two reporting
task approaches were measured based on thread count (see figure 16).

Figure 16
Comparison of Geoprocessing Service Response

vs. Map + Geometry Service Response

Esri White Paper 23

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 24

The performance difference between the two approaches was significant. The map query
and geometry service yielded much faster response times over the geoprocessing service
throughout the test. As the thread count increased, the response time for the map query
and geometry service was consistently under half a second until eight or more threads
were applied. The geoprocessing service response time was consistently more than half a
second and continued to increase as more threads were added. The geoprocessing service
tends to be resource intensive in nature and causes the ArcGIS Server system to utilize
more resources to execute the task. This can adversely affect other incoming requests on
the server.

It was observed that the maximum throughput for the geoprocessing service was
approximately 10,896 transactions per hour versus 98,064 transactions per hour for the
map query and geometry service approach. Therefore, the map query and geometry
service approach was selected for the Riverside Viewer Web mapping application,
because of its reduced system-level impact and simplicity of use.

Tip 7: Use geometry services for simple operations such as buffering and spatial
selections. Use geoprocessing services for more sophisticated operations.

Web Application
Development

ArcGIS Server provides several different software developer kits (SDKs) for building
Web applications. There are two groups of SDKs:

 ArcGIS Web Mapping APIs
● JavaScript™ (www.esri.com/javascript)
● Flex™ (www.esri.com/flex)
● Silverlight™ (www.esri.com/silverlight)

 Web Application Development Frameworks (ADF™)
● .NET (www.esri.com/net)
● Java™ (www.esri.com/java)

The ArcGIS Web Mapping APIs provide a simple programming model for building
applications. Their simple architecture and approachable SDK allow Web developers to
quickly and efficiently build Web mapping applications. Web ADFs provide a more
sophisticated development environment for GIS-based Web applications.

Tip 8: The most important factor when deciding which SDK to use for ArcGIS Server
development is skills: users should select the SDK based on how comfortable they are
with one programming environment as opposed to another. Alternatively, if they have no
programming skills, they can configure the out-of-the-box Web mapping application.

As mentioned previously, the ArcGIS API for Flex was used to create the Riverside
Viewer Web mapping application. The application is based on a sample viewer that can
be found online at the ArcGIS Server Resource Center.20

20

 More sample viewers for the ArcGIS API for Flex are available at
http://resources.esri.com/arcgisserver/apis/flex/.

http://www.esri.com/javascript
http://www.esri.com/flex
http://www.esri.com/silverlight
http://www.esri.com/net
http://www.esri.com/java
http://resources.esri.com/arcgisserver/apis/flex/

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 25

In terms of mapping, to simplify the user experience, two exclusive basemaps (Riverside
Street Map and Imagery Basemap) were configured. By design, users are purposely
prevented from being able to display both basemaps simultaneously. This prevents the
client from downloading map tiles for both services when navigating the map. While it is
possible to enable the two map services to work in combination, this would have required
both cartographic and performance trade-offs.

The Utilities dynamic map service will always display on top of the basemaps and offers
users the ability to turn its layers on and off in the display. Layers from the map
document were logically grouped into operational layers, thus supporting the visibility of
themes as opposed to layers. Table 6 lists the data layers in the Riverside_Electric map
document and how they are aggregated into operational layers for the Web application.

Table 6
List of ArcMap Layers That Can Be Toggled in the

Riverside Viewer Web Mapping Application

ArcMap Layers Web Application Layers That Can Be Toggled
Circuit Breaker Transmission
Substations
Transmission

Transmission

Bridging
Circuit Breakers
Streetlights
Switches
Transformers

Electric

Poles Poles
Meters Meter
Primary OH
Secondary OH
Secondary UG

Distribution

The user experience for the Riverside Viewer Web mapping application is simple and
intuitive. Controls are located in the upper left corner, and drop-down menus appear
when the cursor is paused on one of the four control icons: Map, Navigation, Tools, and
Help. Additional control windows may appear in the upper right corner of the application
when activated. Appendix A contains information on the functionality available in the
Web mapping application and numerous screen captures that illustrate the example user
workflow described in table 1. Figure 17 shows the selectable data layers in the Web
application from the Utilities dynamic map service.

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Figure 17
Riverside Viewer Web Mapping Application

Showing Selectable Layers in the Utilities Service

Additional capabilities of the Riverside Viewer Web mapping application include Find
Address, Search Parcels, Search Schools, and Search Pole by ID. Some of these search
windows in the Web application are shown in figure 18.

Figure 18
Riverside Viewer Web Mapping Application Example Searches

ArcGIS Server
Solution Assessment

This section discusses how the overall ArcGIS Server system works when all the pieces
are finally assembled—in other words, how the system behaves when many simultaneous
users access the Riverside Viewer Web mapping application to perform their business
task requirements. Microsoft® Visual Studio® Team Systems 2008 Test Edition was the
software used to record and simulate the Web traffic between the server and client
machines. Appendix F contains details on the performance testing methodology.

The example user workflow outlined in table 1 was performed on the server. Multiple
users were applied to simulate heavy load on the server, and the response time for each
individual step in the example workflow was measured. A think time of six seconds was
set between each workflow step, along with random input APNs and addresses to further
simulate a more realistic user load scenario. In effect, capacity performance and system

August 2009 26

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

scalability of the ArcGIS Server system was measured. Response time performance
results are shown in figure 19.

Figure 19
Performance Chart of Different User Workflow Tasks

The ArcGIS Server system was able to support all tasks from the example user workflow
with response times that were less than two seconds—the acceptable threshold response
time. This response time result was consistent until approximately 81 or more users were
accessing the Web application. Performance measurement of the configuration indicated
that at 81 users, the system's CPU usage was at approximately 80 percent. This is a good
indicator that the ArcGIS Server solution was designed well and optimally configured for
a peak of no more than 81 concurrent users.

The three most expensive tasks (in terms of highest response time) from the example user
workflow were (in decreasing order): find pole by its SynergenID (step 12), find parcel
by its APN (step 10), and turn on utilities data (step 8). These tasks are directly associated
with the Utilities dynamic map service, which was expected to require more resources.
Recall that in dynamic map services, the information content is displayed/accessed live
from the geodatabase. Performance for these steps can be easily improved by adding
more SOC machines to the configuration.

Overall, the completed Riverside Viewer Web mapping application is a successful
ArcGIS Server solution for the example municipal/local government use case. With good
planning and efficient Web services design, the resultant Web mapping application
satisfied all the business requirements of the use case.

Esri White Paper 27

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 28

Summary To conclude, this document discussed several best practices for an ArcGIS Server Web
mapping application design for municipal/local government use. It also described the
logic behind certain implementation/configuration decisions. Below is a summary of the
high-level Web mapping application design tips that were presented and discussed:

 Use cached map services for serving GIS data with ArcGIS Server whenever
possible. They yield better performance and put less load on the server compared to
dynamic map services.

 In general, avoid caching areas in the map that will not be used. This will not only
save disk space, but more importantly, it will help expedite the map cache building
process (i.e., make it much faster).

 Esri recommends being conservative when building partial caches. Users should
benefit performance-wise from the map cache in most instances, and trigger on-
demand caching rarely or never. When visiting areas that have not been cached,
users will suddenly notice that the map navigation becomes slightly sluggish, as the
map tiles are created on the fly.

 Imagery map caches should be separate from vector data map caches. Do not
combine imagery and text data within the same cache; instead, create one cache for
imagery and a separate cache for text (e.g., annotation).

 If the same data can be contained in a cached map service or a dynamic map service,
place it in a cached service—this is optimal. Avoid data duplication between cached
map and dynamic map services.

 When possible, publish dynamic map services using map service definition (.msd)
files. They are known as optimized map services and provide superior throughput.

 Use geometry services for simple operations such as buffering and spatial selections.
Use geoprocessing services for more sophisticated operations.

 The most important factor when deciding which SDK to use for ArcGIS Server
development is skills: users should select the SDK based on how comfortable they
are with one programming environment as opposed to another. Alternatively, if they
have no programming skills, they can configure the out-of-the-box Web mapping
application.

J-9804

Appendix A: Riverside Viewer
Web Mapping Application and
User Workflow

The Riverside Viewer Web mapping application was created with the
ArcGIS API for Flex, which can be easily configured to work with
ArcGIS Server services. It is a free download from the ArcGIS Server
Code Gallery in the ArcGIS Server Resource Center:

ArcGIS API for Flex version 1.1
http://resources.esri.com/arcgisserver/apis/flex/

Available Functionality in the Riverside Viewer Web Application

Esri White Paper 29

http://resources.esri.com/arcgisserver/apis/flex/

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Screen Captures of the Example User Workflow

1. Start the application at the default extent: overview of the city of Riverside with the

street map displayed.

2. Geocode an address (e.g., 3090 Rice Road); center the map on the candidate result.

August 2009 30

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

3. Switch the basemap to imagery, then switch back to street map.

Esri White Paper 31

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

4. Retrieve further details on the parcel at the address by identifying it.

5. Find a parcel by its APN (e.g., 218181018) and zoom to it.

August 2009 32

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

6. Create a report of all properties within 300 feet of the parcel.

Esri White Paper 33

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

7. Find a school by its name (e.g., Riverside City College) and zoom to it.

August 2009 34

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

8. Turn on the Utilities dynamic layer.

Esri White Paper 35

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

9. Turn off the meters layer and refresh the map display.

10. Find a parcel by its APN and zoom to it.

August 2009 36

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

11. Turn on the meters layer.

Esri White Paper 37

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

12. Find an electrical pole by its SynergenID and zoom to it.

August 2009 38

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

13. Zoom to the full extent and close the application.

Esri White Paper 39

J-9804

August 2009 40

Appendix B: GIS Datasets for the
City of Riverside, California

The Riverside Viewer Web mapping application used the following GIS
datasets:

Dataset Name Dataset Type Size (# of records)
File Geodatabase
Addresses Point 84,213
Arroyos Polygon 49
Blocks Polygon 2,516
Buildings Polygon 105,562
City_Boundary Line 21
City_Features Polygon 40
City_Features_Anno_10K Annotation 24
City_Features_Anno_25K Annotation 27
City_Features_Anno_50K Annotation 32
City_Streets Line 528
Highway_Shields Point 5
Highways Line 24
Neighb Polygon 28
Neighb_Anno Annotation 27
Parcel_Front_Anno_500 Annotation 69,432
Parcel_Front_Anno_500_Mask Annotation 69,431
Parcels Polygon 79,675
Parks Polygon 78
Parks_Anno Annotation 3
Parks_Anno_30K Annotation 50
Parks_Anno_7500 Annotation 59
Railroad Line 242
Schools Polygon 87
Schools_Anno_15K Annotation 69
Schools_Anno_25K Annotation 69
Sidewalk Line 21,831
Streets Line 23,302
Streets_Anno_10K Annotation 2,124
Streets_Anno_15K Annotation 1,071
Streets_Anno_2500 Annotation 3,936
Streets_Anno_7500 Annotation 2,890
Streets_Dissolve Line 4,077

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 41

Dataset Name Dataset Type Size (# of records)
Workgroup ArcSDE Geodatabase

Bridging Line 2,474
Circuit_bkr Point 38
Meters Point 7,972
Poles Point 4,559
Primary_OH Line 2,505
Primary_UG Line 3,034
Secondary_OH Line 8,879
Secondary_UG Line 6,828
Streetlights Point 5,248
Substation Point 16
Switch Point 2,085
Trans_ckt Point 4
Trans_line Line 317
Transformers Point 2,446

J-9804

Appendix C: Riverside Street
Map—Scale Cache Levels

Street Map at 1:125,000 Scale

Street Map at 1:64,000 Scale

August 2009 42

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Street Map at 1:32,000 Scale

Street Map at 1:16,000 Scale

Esri White Paper 43

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Street Map at 1:8,000 Scale

Street Map at 1:4,000 Scale

August 2009 44

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Street Map at 1:2,000 Scale

Street Map at 1:1,000 Scale

Esri White Paper 45

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Street Map at 1:500 Scale

August 2009 46

J-9804

Appendix D: The Geoprocessing
Service

In this appendix, the workflow and logical order of operations in the
SelectSurroundingParcelsStdAlone geoprocessing model are explained.

The model can be subdivided into three general steps:

 Step 1—An input APN value (to select a parcel) is sent to a Make Feature Layer
tool. The expression in Make Feature Layer is "APN" = '%APN%', which takes
the input APN string parameter from the user and queries the Parcels data layer. To
keep the model simple, only the APN string is exposed as a parameter to the user
(instead of the entire SQL expression parameter). In general, exposing many SQL
expression parameters in geoprocessing services will likely make them less intuitive
to use and more error prone. The Make Feature Layer tool outputs the selected
parcel.

At the same time, the Parcels data layer is also input into another Make Feature
Layer tool that outputs a parcel layer that will be used by the Select Layer By
Location tool in step 3.

 Step 2—The Buffer tool takes the selected parcel input and creates a 300-foot buffer

around it. The output buffer polygon is sent to the Select Layer By Location tool.

 Step 3—The Select Layer By Location tool selects parcel features that are within the
300-foot buffer from the parcel layer created in step 1. It exposes them as a
GPFeatureRecordSetLayer parameter that can be used to render the surrounding
parcels in the map display and/or create a list of them.

August 2009 47

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

Throughout the model, selections are used, so ArcGIS Server does not have to save
information to disk. This reduces disk I/O, which translates into a more efficient
geoprocessing service. Also consider (1) the use of in_memory workspace in
geoprocessing models to reduce disk I/O and (2) publishing them as synchronous
services.*

Properties of the Geoprocessing Service

The Python version of the model is presented below for further details:

Import relevant modules
import sys, os, arcgisscripting, traceback

Create the geoprocessing scripting object
gp = arcgisscripting.create()

try:
 # Get Input argument...
 APN = gp.GetParameterAsText(0)

* More information on tuning geoprocessing services can be found in the ArcGIS Server Help topic

Performance tips for geoprocessing services.

August 2009 48

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 49

Local variables...
 Parcels = "<path to your parcels>"
 Parcel_Layer = "Parcels_Layer"
 Selected_Parcel = "Selected_Parcels_Layer"
 Buffer_Output = "in_memory\\Parcels_Buffer"

 # Make a Feature Layer for the parcel specified
 gp.MakeFeatureLayer_management(Parcels, Selected_Parcel,
"\"APN\" = '%APN%'", "",
"AREA AREA VISIBLE NONE;APN APN VISIBLE NONE;CITY_OWNED
CITY_OWNED VISIBLE NONE;METROSCAN METROSCAN VISIBLE
NONE;Shape_Length Shape_Length VISIBLE NONE;Shape_Area
Shape_Area VISIBLE NONE")

 # Buffer the specified parcel
 gp.Buffer_analysis(Selected_Parcel, Buffer_Output, "300
 Feet", "FULL", "ROUND", "NONE", "")

 # Make a Feature Layer of the parcels
 gp.MakeFeatureLayer_management(Parcels, Parcel_Layer,
"", "", "AREA AREA VISIBLE NONE;APN APN VISIBLE
NONE;CITY_OWNED CITY_OWNED VISIBLE NONE;METROSCAN METROSCAN
VISIBLE NONE;Shape_Length Shape_Length VISIBLE
NONE;Shape_Area Shape_Area VISIBLE NONE")

 # Select all the parcels that intersect the buffer
 gp.SelectLayerByLocation_management(Parcel_Layer,
"INTERSECT", Buffer_Output, "", "NEW_SELECTION")

 gp.SetParameterAsText(1, Parcel_Layer)
 gp.SetParameterAsText(2, Selected_Parcel)
 gp.SetParameterAsText(3, Buffer_Output)

except:
 tb = sys.exc_info()[2]
 tbinfo = traceback.format_tb(tb)[0]
 pymsg = "PYTHON ERRORS:\nTraceback Info:\n" + tbinfo +
 "\nError Info:\n " + \
 str(sys.exc_type)+ ": " + str(sys.exc_value) + "\n"
 gp.AddError(pymsg)

 msgs = "GP ERRORS:\n" + gp.GetMessages(2) + "\n"
 gp.AddError(msgs)

J-9804

August 2009 50

Appendix E: Map Queries and the
Geometry Service

This appendix discusses the workflow of using the Riverside Street Map
to search for a parcel, buffer the found parcel boundary, and generate a
report of parcels falling within that buffer.

The code below illustrates the above workflow but with U.S. state data available from an
ArcGISSM Online sample server.

Finding a State The find task (findTask) is executed with parameters defined by "myFindParams". The
function findTaskCompleteHandler is called after successful execution of the task.

<!-- Find Task -->
<esri:FindTask id="findTask"
executeComplete="findTaskCompleteHandler(event)"

url="http://sampleserver1.arcgisonline.com/ArcGIS/rest/
services/Specialty/ESRI_StatesCitiesRivers_USA/MapServer/
find" />

<!-- Parameters for Find Task -->
<esri:FindParameters id="myFindParams"

 returnGeometry="true"
 contains="true"
 searchText="{fText.text}"
 layerIds="[2]"
 searchFields="['STATE_ABBR','STATE_NAME']" />

<!-- Find Task -->
 private function
findTaskCompleteHandler(event:FindEvent):void
 {

myGraphicsLayer.clear();
 // add only first feature as graphic to graphics
layer, ignore remaining
 var graphic:Graphic = event.findResults[0].feature;
 graphic.toolTip = event.findResults[0].
 foundFieldName + ": " +

event.findResults[0].value;
 myGraphicsLayer.add(graphic);
 findResGraphic = graphic;
 // zoom to extent of all features
 map.extent = Polygon(event.findResults[0].
 feature.geometry).extent.expand(1.1);
 doBuffer();

 }

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 51

Buffer Found State
Using Geometry

Service

The buffer of the found state is performed by executing the function doBuffer. The buffer
is executed on the geometry service defined by "myGeometryService" using the
appropriate parameters set in the doBuffer method. On completion of the buffer
operation, the function bufferCompleteHandler is called, which adds the buffered
geometry to the graphics layer.

<!-- Geometry Service -->
<esri:GeometryService id="myGeometryService"
 url="http://sampleserver2.arcgisonline.com/ArcGIS/rest/
services/Geometry/GeometryServer"/>

private function doBuffer():void

 {
 var bufferParameters:BufferParameters = new
 BufferParameters();
 bufferParameters.features = [findResGraphic];
 bufferParameters.distances = [bText.text];
 bufferParameters.unit = BufferParameters.UNIT_FOOT;
 bufferParameters.bufferSpatialReference = new
 SpatialReference(4326);

myGeometryService.addEventListener(GeometryServiceEvent.BUF
FER_COMPLETE, bufferCompleteHandler);
 myGeometryService.buffer(bufferParameters);

 }

 private function bufferCompleteHandler
(event:GeometryServiceEvent):void
 {

myGeometryService.removeEventListener(GeometryService

Event.BUFFER_COMPLETE, bufferCompleteHandler);
 bufferResGraphic = event.graphics[0];
 myGraphicsLayer.add(bufferResGraphic);
 doQuery();

 }

Report Generation To generate the report, a query task is executed using the buffered geometry as the spatial
extent to find all the enclosing states. The attributes of the selected states are used to
populate the data grid.

<!-- Query Task for generating report -->
<esri:QueryTask id="queryTask"
url="http://sampleserver1.arcgisonline.com/ArcGIS/rest/
services/Specialty/ESRI_StatesCitiesRivers_USA/MapServer/2"
/>

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 52

private function doQuery():void
{
var query:Query = new Query();
query.geometry = bufferResGraphic.geometry;
query.returnGeometry = true;
query.spatialRela "esriSpatialRelIntersects" tionship = ;
query.outFields=["STATE_NAME","STATE_FIPS","SUB_REGION","ST
ATE_ABBR","POP1990","POP1999"];
queryTask.execute(query);

}

<mx:DataGrid id="resultsGrid" width="100%"
dataProvider="{queryTask.executeLastResult.attributes}"
visible="{queryTask.executeLastResult != null}" >

<mx:columns>
<mx:DataGridColumn headerText="State Name"

dataField="STATE_NAME"/>
<mx:DataGridColumn headerText="Region"
dataField="SUB_REGION"/>
<mx:DataGridColumn headerText="FIPS"
dataField="STATE_FIPS"/>
<mx:DataGridColumn headerText="Abbreviation"

dataField="STATE_ABBR"/>
<mx:DataGridColumn headerText="Population 1990"

dataField="POP1990"/>
<mx:DataGridColumn headerText="Population 1999"

dataField="POP1999"/>
</mx:columns>

</mx:DataGrid>

The complete source code for executing this workflow appears below:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:esri="http://www.esri.com/2008/ags">
<mx:Script>

<![CDATA[
import com.esri.ags.tasks.Query;
import com.esri.ags.SpatialReference;
import com.esri.ags.tasks.BufferParameters;
import com.esri.ags.events.GeometryServiceEvent;
import com.esri.ags.geometry.Polygon;
import com.esri.ags.Graphic;
import com.esri.ags.events.FindEvent;

private var findResGraphic : Graphic;
private var bufferResGraphic : Graphic;

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 53

<!-- Find Task -->
private function findTaskCompleteHandler
(event:FindEvent):void
{ myGraphicsLayer.clear();
// Add only first feature as graphic to graphics layer,
ignore remaining
var graphic:Graphic = event.findResults[0].feature;
graphic.toolTip = event.findResults[0].foundFieldName +

 ": " + event.findResults[0].value;
myGraphicsLayer.add(graphic);
findResGraphic = graphic;
// zoom to extent of all features
map.extent =
Polygon(event.findResults[0].feature.geometry).extent.ex
pand(1.1);
doBuffer();

}

private function doBuffer():void
{

var bufferParameters:BufferParameters = new
BufferParameters();
bufferParameters.features = [findResGraphic];
bufferParameters.distances = [bText.text];
bufferParameters.unit = BufferParameters.UNIT_FOOT;
bufferParameters.bufferSpatialReference = new
SpatialReference(4326);

myGeometryService.addEventListener(GeometryServiceEvent.

BUFFER_COMPLETE, bufferCompleteHandler);
myGeometryService.buffer(bufferParameters);

}

private function
bufferCompleteHandler(event:GeometryServiceEvent):void

{
myGeometryService.removeEventListener(GeometryService

Event.BUFFER_COMPLETE, bufferCompleteHandler);
bufferResGraphic = event.graphics[0];
myGraphicsLayer.add(bufferResGraphic);
doQuery();

}

private function doQuery():void
{

var query:Query = new Query();
query.geometry = bufferResGraphic.geometry;
query.returnGeometry = true;
query.spatialRelationship =

"esriSpatialRelIntersects";

ArcGIS Server in Practice Series:
Best Practices for Creating an
ArcGIS Server Web Mapping Application
for Municipal/Local Government

 J-9804

August 2009 54

query.outFields=["STATE_NAME","STATE_FIPS","SUB_REGIO
N","STATE_ABBR","POP1990","POP1999"];
 queryTask.execute(query);

}
]]>
</mx:Script>

<!-- Find Task -->
<esri:FindTask id="findTask"
executeComplete="findTaskCompleteHandler(event)"

url="http://sampleserver1.arcgisonline.com/ArcGIS/rest/
services/Specialty/ESRI_StatesCitiesRivers_USA/MapServer/
find" />

<!-- Parameters for Find Task -->
<esri:FindParameters id="myFindParams"

returnGeometry="true"
contains="true"
searchText="{fText.text}"
layerIds="[2]"
searchFields="['STATE_ABBR','STATE_NAME']" />

<!-- Geometry Service -->
<esri:GeometryService id="myGeometryService"

url="http://sampleserver2.arcgisonline.com/ArcGIS/rest/
services/Geometry/GeometryServer"/>

<!-- Query Task for generating report -->
<esri:QueryTask id="queryTask"
url="http://sampleserver1.arcgisonline.com/ArcGIS/rest/
services/Specialty/ESRI_StatesCitiesRivers_USA/
MapServer/2"/>

<mx:Panel width="100%" height="100%">

<mx:HBox>
<mx:Label text="State Name" />

<mx:TextInput id="fText" text="Neva" />
</mx:HBox>
<mx:HBox>

<mx:Label text="Buffer distance" />
<mx:TextInput id="bText" text="5" />

</mx:HBox>

<mx:Button label="Find"
click="{findTask.execute(myFindParams)}" />

<esri:Map id="map">
<esri:ArcGISTiledMapServiceLayer
url="http://server.arcgisonline.com/ArcGIS/rest/
services/ESRI_StreetMap_World_2D/MapServer"/>

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Esri White Paper 55

<esri:GraphicsLayer id="myGraphicsLayer" />
</esri:Map>

<mx:DataGrid id="resultsGrid" width="100%"
dataProvider="{queryTask.executeLastResult.attributes}"
visible="{queryTask.executeLastResult != null}" >

<mx:columns>
<mx:DataGridColumn headerText="State Name"
dataField="STATE_NAME"/>
<mx:DataGridColumn headerText="Region"
dataField="SUB_REGION"/>
<mx:DataGridColumn headerText="FIPS"
dataField="STATE_FIPS"/>
<mx:DataGridColumn headerText="Abbreviation"
dataField="STATE_ABBR"/>
<mx:DataGridColumn headerText="Population 1990"
dataField="POP1990"/>
<mx:DataGridColumn headerText="Population 1999"
dataField="POP1999"/>
</mx:columns>
</mx:DataGrid>

</mx:Panel>

</mx:Application>

J-9804

August 2009 56

Appendix F: Testing Methodology
and Definitions

A Web mapping application is a popular way to distribute GIS content to
many users over the Web. With this paradigm comes the need for the
mapping application to communicate with the server over the Web
through HTTP, a common Web protocol.

To adequately model a user accessing the Web application, common activities and
interactions need to be written down and reproduced using the Web application within a
Web browser. While the user activity is being performed, a tool that is able to record all
the Web traffic being passed between the server and client is needed to capture the
transactions. The captured traffic is subsequently replayed through a performance test
tool capable of simulating multiple concurrent requests appearing as different users.

For this use case, the testing tool was Microsoft Visual Studio Team Systems 2008 Test
Edition (VSTS). Within VSTS, the recorded Web traffic can be edited to support the
dynamic input of query parameters. This enables the application of tests on different
areas of the dataset as well as examination of what multiple users in different areas,
performing different actions, would do to the system. Other functionalities available
within VSTS are the complete Performance Monitor (Perfmon) integration, which
provides insight into Windows-based servers with regard to CPU, disk, RAM, and so
forth, usage during the different stages of testing.

http://www.microsoft.com/visualstudio/en-us/products/teamsystem/default.mspx

ArcGIS Server in Practice Series:
Best Practices for Creating an

ArcGIS Server Web Mapping Application
for Municipal/Local Government

J-9804

Dynamic data feed

Dynamic data feed source

Perfmon Integration

When performing tests with a test tool as complex as VSTS, the definition of users and
threads is an important concept to understand:

 User: An intelligent consumer of data services within the rich Internet application
that requires a pause between interactions to decide if further interaction is needed.
The pause between user interactions is described as a think time.

 Thread: A consumer of data services within the rich Internet application that

requires no pause between interactions to decide if further interaction is needed.

While testing the Riverside Viewer Web mapping application, two different approaches
were used, and each illustrates something different. First, the user-based approach is a
request made by the test tool with a defined wait time between recorded requests to
simulate an intelligent user interaction. This is common in capacity planning exercises to
effectively determine if a capacity requirement can be met. The second approach is the
thread-based approach, common in a benchmark scenario to show performance
differences between services.

Esri White Paper 57

Printed in USA

About Esri

Since 1969, Esri has been helping

organizations map and model our

world. Esri’s GIS software tools

and methodologies enable these

organizations to effectively analyze

and manage their geographic

information and make better

decisions. They are supported by our

experienced and knowledgeable staff

and extensive network of business

partners and international distributors.

A full-service GIS company, Esri

supports the implementation of GIS

technology on desktops, servers,

online services, and mobile devices.

These GIS solutions are flexible,

customizable, and easy to use.

Our Focus

Esri software is used by hundreds

of thousands of organizations that

apply GIS to solve problems and

make our world a better place to

live. We pay close attention to our

users to ensure they have the best

tools possible to accomplish their

missions. A comprehensive suite of

training options offered worldwide

helps our users fully leverage their

GIS applications.

Esri is a socially conscious business,

actively supporting organizations

involved in education, conservation,

sustainable development, and

humanitarian affairs.

Contact Esri

1-800-GIS-XPRT (1-800-447-9778)

Phone: 909-793-2853

Fax: 909-793-5953

info@esri.com

www.esri.com

Offices worldwide

www.esri.com/locations

380 New York Street

Redlands, CA 92373-8100 USA

	ArcGIS® Server in Practice Series: Best Practices for Creating an ArcGIS Server Web Mapping Application for Municipal/Local Government
	Copyright © 2009 Esri
	Contents
	About the ArcGIS Server in Practice Series
	Introduction
	Use Case Requirements
	User Workflow

	GIS Datasets
	Solution Architecture
	Server Configuration
	Physical Hardware

	Data Publication Planning
	Web Services
	Riverside Street Map Map Service
	Imagery Basemap Map Service
	Utilities Map Service
	U.S. Street Geocoding Service
	Geometry: Map and Geometry Service

	Web Application Development

	ArcGIS Server Solution Assessment
	Summary
	Appendix A: Riverside Viewer Web Mapping Application and User Workflow
	Appendix B: GIS Datasets for the City of Riverside, California
	Appendix C: Riverside Street Map—Scale Cache Levels
	Appendix D: The Geoprocessing Service
	Appendix E: Map Queries and the Geometry Service
	Finding a State
	Buffer Found State Using Geometry Service
	Report Generation

	Appendix F: Testing Methodology and Definitions

