Using Geostatistical Analyst for analysis of California air quality

Konstantin Krivoruchko
kkrivoruchko@esri.com

Throughout the last two centuries, air quality and air pollution have been recognized throughout the world as pressing environmental issues. From the Industrial Revolution in late 18th century in Europe through the 19th and 20th centuries the use of coal in homes and industry polluted the air. Growth continued. Smog and ‘pea-soupers’ became common in cities throughout the world. Following the famous London Smog of 1952 that lasted for 5 days and led to over 5000 deaths, pollution from industry and homes was dramatically reduced in an attempt to protect health.

Southern California experiences some of the worst air quality in the United States. Wind speeds in and around Los Angeles are low compared to other urban centers, and the region is characterized by low rates of atmospheric mixing, so that pollutants become concentrated within the atmosphere. In addition, the long hours of sunshine, which attract visitors to the region’s beaches, are also responsible for very high rates of photochemical reactions and the production of ozone. Federal ozone standards are commonly exceeded during the spring through to early autumn, whereas carbon monoxide and particulate highs are recorded in the late autumn and winter.

Air quality data used in the case studies below were collected by the California Air Resources Board, Air Quality Data Branch, Statistical and Analytical Services Section, beginning from 1980. The internet site, which provides related information, is http://www.arb.ca.gov/aqd/aqd.htm.

The case studies below show spatial statistical air quality data analysis using the Geostatistical Analyst extension to ArcGIS. If you have little experience in geostatistical data analysis, we suggest reading “Introduction to Modeling Spatial Processes Using Geostatistical Analyst” first.

1. Analysing time-series data

Since Geostatistical Analyst was designed to interpolate between variables in two dimensions, the following steps need to be used to prepare one-dimensional data for analysis:

- Use the data attribute table option “Add Field…” to create a pseudo-coordinate for the data set in the second dimension. Call the new field name “Y”.
- To calculate values for the new field, highlight it, right-click, and select the calculator function. In the field calculator box enter the following equation:
 \[Y = 0.975 + 0.05 \times \text{rnd()} \]
 This generates Y values equal to 1 plus or minus a small random component. This is necessary so that Geostatistical Analyst can prevent contouring in impossible situations.
To display the data points in ArcMap, open the database layer as a .DBF file. For the X coordinate, select the field with daily ozone measurements, and for the Y coordinate select the Y field calculated above. The Y values should be small, the data appearing as a line in the data view.

The data is now ready for analysis. Since Geostatistical Analyst does not provide tools to visualize the result of modeling in 1D, you will have to use other software, for example Microsoft Excel. In examples below, we use Geostatistical Analyst’s validation option “Save Validation” to predict values of ozone for each day in 1999. The resulting .DBF file was further analyzed using spreadsheet software. However, visualization of the non-spatial data using GIS is not necessary, and we advise that you export the validation or cross-validation tables and cancel the analysis without visualizing the predictions.

If the input data are continuous as air pollutants are, kriging and cokriging are powerful tools for prediction and assessing prediction uncertainties within one-dimensional data sets.

In this section, one-dimensional kriging is used to analyze daily measurements of ozone at two locations in California, San Francisco and Redlands, using the one-hour daily maximum concentration of ozone in 1999.

Our goal is to analyze dependence between observations separated by small number of days, from one to seven. We predict new values for each day using information on average dependence between following days. If the averaging lag equals one week, the resulting prediction is the average weekly ozone concentration with associated uncertainty. We used a filtered version of kriging to achieve this goal. A prediction confidence interval provides information on other likely daily ozone values.

Figure 1 shows the data in blue, and the filtered ordinary kriging interpolation, with the nugget effect treated as a measurement error (red line). Power transformation with a power value of 0.5 was used. Error bars in pink are upper and lower 95% confidence intervals, assuming that predictions and their standard errors are normally distributed, that is at the vertical pink lines represent kriging prediction ± 1.96×kriging standard error values.

The green horizontal line shows the upper permissible level of 0.12 parts per million (ppm) of the annual maximum one-hour ozone concentration.
Figure 1. The maximum daily concentration of ozone per hour in 1999 in Redlands, CA. Ordinary filtered kriging with a power transformation value of 0.5 and a semivariogram lag of one day.

Because of uncertainties associated with observations and because of large data variability, it is risky to predict a day’s ozone concentration using the measurements of a few days before. However, the weather is stable in southern California, and usually it is not difficult to predict tomorrow’s temperature based on today’s weather conditions.

Figure 2 shows semivariogram models for transformed data averaging using a one day lag. The semivariogram model is a J-Bessel of an order of 1.065 with a partial sill equaling 0.00257, a range of 5.62 days, and a nugget of 0.00203.

Figure 2. Semivariogram models using a one day lag.
A large variation in values separated by just one day is evidence of measurement errors, not just measurement device inaccuracy, but also positional errors (data are not separated by exactly one day) and time integration errors (the measurements lasted approximately one hour).

Figure 3 shows a one-dimensional analysis of the same data as used in figure 1 using seven days lag. Averaging using larger time interval makes prediction smoother.

Because the mountains around it are natural barriers for smog propagation from Los Angeles, figure 4a, Redlands is one of the most contaminated cities in California with ozone concentrations above standard in the summer. However, there are places where the situation is different. For example, in San Francisco the maximum ozone concentration in 1999, shown in figure 4b, was registered on September 30, while the maximum ozone concentration in Redlands in 1999 was three and half months before, on June 13.
Predictions of one-hour ozone concentration in San Francisco are presented in figure 5. The red line shows the filtered ordinary kriging prediction, pink and blue lines are upper and lower 95% confidence intervals, assuming that the predictions and their standard errors are distributed normally. The semivariogram model used for predictions is in the top left corner of figure 5. A lag interval of six days was chosen for averaging.

According to the EPA, the expected annual number of maximum hourly average ozone values exceeding 0.12 ppm must be equal to or less than one. The implementation rule
allows the state no more than three daily maximum hourly average measurements in excess of 0.12 ppm during three years at each approved monitoring site. One alternative to this rule is the probability for each day of exceeding the threshold. Figure 6 presents an ordinary transGaussian kriging estimation of the probability that the 0.12 ppm level was exceeded in Redlands in 1987 and in 1999, shown as red crests. We used a power transformation with the power value equal 0.5. Semivariograms were estimated using averaging by a time lag of one day.

Figure 6. Daily maximum one hour concentration of ozone (blue, left Y-axis) and the probability (red, right Y-axis) that 0.12 was exceeded in 1999 (a) and 1987 (b).

On only one day in 1999 was there a probability greater than 0.9 that the ozone level would exceed 0.12. The situation was much worse in the summer of 1987, when the ozone level was above the threshold about every other day.

The goal of ecological analysis is to estimate the risk of health hazard to the people who live in the contaminated territory. Dose, the parameter used to establish safety rules and regulations, is either proportional to the area under the prediction lines in figures 1, 3, and 5 above,

\[Dose = \text{function}(time) \times \text{Area}, \]

or it is a function of that area,

\[Dose = \text{function (time)} \times \text{function (Area)}. \]

Rather than use a single measurement, which can contain errors, it is better to integrate exposure. The proportional coefficient \(\text{function (time)} \) can, for instance, be made equal to the proportion of the days the population under risk spent outside buildings.

Indoor exposure can be even higher than outdoor exposure. If indoor exposure is not negligible, it should be estimated separately, and added to the outdoor exposure.

2. Mapping SO₂ (focusing on weak spatial autocorrelation).

Sulphur dioxide (SO₂) is a colorless, non-flammable gas. The sources of sulphur dioxide include fossil fuel combustion, smelting, manufacture of sulphuric acid, conversion of wood pulp to paper, incineration of refuse, and production of elemental sulphur. Coal burning is the single largest man-made source of sulphur dioxide, accounting for about
50% of annual global emissions, with oil burning accounting for a further 25-30%. A natural source of sulphur dioxide is volcanoes. SO₂ has a penetrating odour that irritates the eyes and air passages. Even moderate concentrations of sulphur dioxide may result in health problems for asthmatics.

Ambient air pollution is often compared with disease rates, as in a series of articles published on the correlation between such air pollutants as SO₂, O₃, NO₂, PM₁₀, and PM₂.₅ and respiratory symptoms, cancer rates, and some other chronic diseases in such non-smokers as Seventh-day Adventists. Results of the studies suggest a relationship between long term exposure to air pollution and the development of specific chronic diseases, including bronchitis, asthma, and cancer. In these case studies, pollution measured at the monitoring stations was interpolated by an inverse distance weighted (IDW) algorithm to zip code centroids, and predictions were used to assess the long-term effects of air pollution on various chronic diseases.

We used 90 measurements of the high 24-hour concentration of SO₂ for November 1980, the month when the highest concentration of the chemical was recorded, to produce maps using IDW and kriging interpolators. Figure 7a presents the result of IDW interpolation using a power value of 6.7, derived using Geostatistical Analyst’s “Optimize Power Value” option. That finds the minimum root-mean-square error of several cross-validation exercises using different power values. This map has better cross-validation statistics than those that created using the default power value of 2.

The California air quality standard for SO₂ is 0.04 ppm. Brown and red indicate areas with predictions above that standard. Very large warm colored areas around a few measurements with the highest values of ozone cause suspicion, as well as large blue-colored areas, considered as safes.

Figure 7b presents a simple kriging interpolation with normal score data transformation. Experimental covariance and a J-Bessel model are presented in the top right corner.

Figure 7. Prediction of maximum 24-hour concentration of SO₂ in November 1980 using IDW (a) and simple kriging interpolators (b).
Spatial correlation in figure 7b is weak and smooth, with a large nugget effect and a range of data correlation. Though this map looks more logical and has a better cross-validation statistics than the map in figure 7a, we do not think that it can help a lot in epidemiological studies either. This is because the weaker the spatial correlation, the more data are needed for meaningful interpolation. The number of SO$_2$ measurements is insufficient for ecological analysis.

The main difference between interpolation using deterministic and statistical methods is that kriging prediction is accompanied by estimated prediction standard error. Such a map is presented in figure 8a. Areas with low prediction errors, in blue, occupy a relatively small part of the territory under study.

The number of SO$_2$ measurements decreases each year. Figure 8b presents 62 available measurements of high 24-hour concentration of SO$_2$ in May 1999. The covariance model in the top right corner of the figure 8b shows very weak spatial correlation. As a result, it is impossible to produce an interpolation map with reasonably low prediction errors using these data.

![Image](image.png)

Figure 8. a) Simple kriging prediction standard errors of maximum 24-hour concentration of SO$_2$ in November 1980. b) Observations of the 24-hour maximum concentration of SO$_2$ in May 1999. Covariance in the upper right corner indicates that there is no spatial autocorrelation.

Figure 9a presents an ordinary kriging prediction of the maximum 24-hour annual value of SO$_2$ in 1999 to the centers of zip codes in Southern California. Measurement values are printed in black. Figure 9b shows the prediction and the prediction’s 90% confidence interval of SO$_2$ in a randomly selected 10% of zip polygons, based on assumption that predictions and their standard errors are distributed normally.
Figure 9. a) Ordinary kriging prediction of SO\textsubscript{2} maximum annual value in 1999 to the centers of zip codes. b) Prediction and prediction 90\% confidence interval of SO\textsubscript{2} in a randomly selected 10\% of zip polygons.

Prediction errors are very large, and reliable interpolation is not possible using available sulfur dioxide data nor is searching for a correlation between exposure from SO\textsubscript{2} and people’s health.

3. Probability mapping

Because predictions are not true values, the uncertainty associated with predictions should be provided. Figures 8a and 10b are examples of prediction standard error maps, quantified by the minimized prediction root mean squared error that makes kriging optimum.

In addition to the combination of prediction and prediction standard error maps, two other possibilities to present this information on just one map are provided by Geostatistical Analyst, namely probability and quantile mapping. Probability maps show the degree the interpolated values exceed a specified variable’s threshold. Quantile maps are particular probability maps where the thresholds are the quantiles of the predicted distribution.

Figure 10a shows the probability that in 1999 maximum 24-hour PM\textsubscript{2.5} value would exceed the California Ambient Air Quality Standard of 65 \(\mu g/m^3 \). We used disjunctive kriging with normal score transformation to create the map. Prediction standard errors are displayed in figure 10b, together with populated places shown as circles. The red line is the standard error of prediction of 0.3. Prediction errors in blue areas are large and decisions about PM\textsubscript{2.5} should be made with great care there.
4. Using additional variables to improve predictions

For data interpolation of air pollution in California, we have a limited number of measurements of several air pollution variables and detailed information on geographic variables, such as elevation, distance to the ocean, and distance to the road (this variable is useful because cars are major sources of air contamination in the most parts of California). Among the possible approaches to interpolate multivariate data is cokriging, which combines spatial data on several variables to make a single map of one of the
variables. It is appealing to use information from other variables to help make predictions, but it comes at a price. Cokriging requires more estimations than kriging, including estimating the autocorrelation for each variable as well as all the cross-covariances.

Cross-correlation between variables can be very informative. Figures 12a and 12b show directional semivariogram clouds and models of ozone and NO2, and figure 12c displays the directional cross-covariance cloud and cross-covariance model between maximum annual one-hour concentrations of ozone and NO2 in 1996. The cross-correlation between NO2 and ozone is asymmetric: the highest cross-covariance occurs for ozone and NO2 at different locations. The highest correlation occurs when taking NO2 values that are shifted to the west of the ozone values. The shift finds the distance and direction where the calculated cross-covariance is at its maximum value. This adds two parameters to the cross-covariance model to describe the shift in the x- and y-coordinates.

![Figure 12. a) Directional semivariogram of ozone. b) Directional semivariogram of nitrogen dioxide. c) Directional cross-covariance of ozone and nitrogen dioxide.](image)

Ozone and nitrogen dioxide maximum values shift because ozone is produced as a result of chemical reactions between pollutants. That means that ozone reaches maximum concentration several hours after NO2. During this time, pollutants shift to the east because typically the wind direction in the summer is from the ocean.

Figure 13a presents the result of ozone prediction using a cokriging model, with ozone as the primary variable and a grid of distances from major California roads as the secondary variable. Major roads are displayed as the top layer of the map. Cross-validation statistics shows that using distance from a road as a secondary variable improves the prediction of ozone pollution. Figure 13b shows the cross-covariance cloud and the exponential model used to create the map in figure 13a. The largest correlation occurs at the non-zero distance between the monitoring stations and the data on the grid. Cross-correlation is anisotropical and shifted, so it takes some time to find the optimal cross-covariance model in this situation.
5. Space-time data analysis using 2D geostatistics

The current version of Geostatistical Analyst cannot work with 3D or space-time data. However, with a little creativity, some space-time data can be analyzed and visualized. Two examples of such analysis are presented in figure 14.

Figure 14a shows the result of predictions using the estimated coefficients of a linear regression trend in maximum one-hour July values of ozone from 1980 to 1999 in 105 monitoring stations. Ozone tends to decrease in the southern and middle parts of California and increase in the north. Fortunately, the level of ozone there is much lower, see figure 13a.

Maximum ozone concentration in each July from 1980 to 1999 was used to create prediction maps. The result of the modeling was exported to grids and displayed using animation in 3D Analyst extension to ArcGIS. Tendency of decreasing ozone concentration is clear here as well.

Figure 14b shows a surface prepared using kriging based on monthly data of PM$_{10}$ in the city of Riverside, using years as the x axis, months as y axis, and maximum annual 24-hours as the data value. Result of predictions was visualized using 3D Analyst. We can see again that pollutant concentration in one of the more contaminated cities of Southern California has tended to decrease over time.
Figure 14. a) Interpolation of ozone trends in 1980-1999. Negative values in cool colors represent areas where contamination decreases and positive values in warm colors where contamination increases. b) Ordinary kriging surface based on monthly measurements of PM$_{10}$ in the city of Riverside.