
44 ArcUser April–June 2006										 www.esri.com

Building Applications
 Using ArcWeb Services with Open Source Tools

Software Version URL

Java SDK 1.5.0_03 www.sun.com

Eclipse 3.1.0 www.eclipse.org

Ant 1.6.2 ant.apache.org

Axis 1.2.1 ws.apache.org/axis

Java Activation
Framework

1.0.2 java.sun.com/products/javabeans/glasgow/jaf.html

By Amar J. Das, Senior Programmer, NSTAR

Software needed for this exercise

This tutorial for ArcWeb Services V2 provides
instructions on how to build an application
that incorporates ArcWeb Services using open
source software. The tools Axis and Ant are
used, and Eclipse was chosen as the integrated
development environment (IDE). This article
does not attempt to explain core concepts of
Web services or tools such as Apache Ant.
Except for ArcWeb Services, all other software
used for development is available freely on the
Internet. The complete version of all listings
referenced in this article is available from
ArcUser Online at www.esri.com/arcuser.
	 Java software development kit (SDK) can
be downloaded from Sun’s Web site. Setup is
self-explanatory, and installing the Eclipse SDK
will also install Ant. Axis will generate error
messages if it does not find activation.jar in
the classpath. Because of that, Java Activation
Framework is included in the setup. Except for
Java SDK, all other products can be downloaded
in their compressed form and can be extracted
using a compress/uncompress utility such as
WinZip. An ESRI Global Account is required
to obtain an evaluation version of ArcWeb
Services. Create an ESRI Global Account by
visiting www1.arcwebservices.com/v2006/
evaluate.jsp. The ArcWeb Services evaluation
license expires after one month or when 5,000
credits for accessing ArcWeb Services have
been used.

Setting Up the Project
Eclipse is becoming the de facto Java IDE.
After acquiring the required software listed
in the accompanying table, create an Eclipse
project.

1.	Start Eclipse, click on the Window
toolbar, and choose Open Perspective >
Java. In the Java Perspective, use File >
New > Project to create a new project.
Click Next in the New Project dialog box
after selecting Java Project. This will bring
up the New Java Project dialog box.
2.	In the Project name box, enter
arcwebtest and select Create separate
source and output folders. Accept all other
default values and click Next.
3.	Go to the Libraries tab and select
the Add External Jars button. Browse
and add the activation.jar, axis.jar,
axis-ant.jar, commons-discovery.jar,
commons-logging.jar, jaxrpc.jar, log4j.jar,
saaj.jar, and wsdl4j.jar files to the project.

Start Eclipse, click on the Window toolbar, and choose Open Perspective > Java.

Use the wizard to create a Java project
called arcwebtest.

Go to the Libraries tab; select the
Add External Jars button; and add the
activation.jar, axis.jar, axis-ant.jar,
commons-discovery.jar, commons-logging.jar,
jaxrpc.jar, log4j.jar, saaj.jar, and wsdl4j.jar
files to the project.

The version numbers will most likely
be different from those shown in the
illustration.
4.	Click Finish and the Eclipse project is
set up.

Creating the Ant Build File
Ant allows developers to automate the
application build process. Instructions for Ant
are assembled in an XML file. The default
name of this file is build.xml, but any name can
be chosen for the build file.

www.esri.com										 ArcUser April–June 2006 45

Developer

Ant allows developers to automate the application build process. Here Ant is running a task in
Ant View in Eclipse.

The map output from MapImage Web service

1.	To create the Ant build file for the
Eclipse project, right-click on arcwebtest
in the Project Explorer and choose New >
File. In the File Name box, enter build.xml.
Click Finish.
2.	Create another file called
build.properties using the same process.
Close build.properties, then right-click on
it in the Project Explorer and use Open
With > Properties File Editor.
3.	Set source, destination directories,
axis home, and other properties in the
build.properties file shown in Listing 1.
4.	If it is not already open, open build.xml.
Type “<” in the editor window. Eclipse
will prompt with two options: Build File
Template and Project. Choose Build File
Template. Eclipse will generate a template
build file. Save this file.

	 Every Ant build file must have <project>
and <target> tags. When a build file runs, the
default target is executed unless the target is
explicitly mentioned. Listing 2 (see complete
listing at www.esri.com/arcuser) shows the
complete build file listing for this project. The
build.properties file is referenced in build.xml
using the <property> tag. To compile any Java
source file, the classpath must be set correctly.
The <path> tag sets the classpath for the project.
The classpath is named as axis.classpath so that
it can be referenced elsewhere.

Generating Java Stubs from WSDL
Web Services Description Language (WSDL)
is an XML-based language used to describe a
Web service’s capabilities. ArcWeb services
exposes various Web services such as the
MapImage Web service, Place Finder Web
service, Proximity Web services. The WSDL
location for these Web services is listed at
arcweb.esri.com/arcwebonline/index.htm.
	 To access these Web services, Java stubs
must be generated from the WSDL. Axis
provides a third-party Ant task to help in this
conversion. It is called WSDL2Java and can
be found in the axis-ant.jar. The core ant task
<taskdef> is used to define the conversion task
(shown in Listing 3).
	 In this tutorial, the targeted ArcWeb
Services are Authentication and MapImage
Web services. The Authentication Web service
validates access to ArcWeb Services. The
MapImage Web service can generate dynamic
map content. A look at the WSDL links for

Continued on page 46

Create an ESRI Global Account by visiting
www1.arcwebservices.com/v2006/evaluate.jsp

46 ArcUser April–June 2006										 www.esri.com

Building Applications

Using ArcWeb Services with Open Source Tools
Continued from page 45

Authentication (arcweb.esri.com/services/
v2/Authentication.wsdl) and MapImage
(arcweb.esri.com/services/v2/MapImage.wsdl)
will reveal several target name spaces. The
autogeneration process will create individual
Java packages for all these name spaces. Using
the Ant <mapping> tag shown in Listing 4, all
the generated files can be placed in a single
package.
	 To execute the WSDL2Java target, add Ant
view to the Eclipse IDE.

1.	 Use Window menu and select Show
View > Ant. On the Ant tab, click on the
Add Buildfile icon.
2.	 Expand arcwebtest in the Buildfile
Selection window and select build.xml.
Click OK.
3.	 Select WSDL2Java in the Ant tab.
Click on the icon Run the Selected Target.
4.	Select arcwebtest in Package Explorer
and click F5 to refresh the project.

	 Notice that a new Java package called
com.esri.arcweb.v2 has been created under the
src folder. Go through the source files in that
package to get familiar with how WSDL links
are converted to Java files.

Developing an
ArcWeb Services Client
Now write a stand-alone client for the ArcWeb
Services.

1.	 Right-click on src under arcwebtest
in the Package Explorer and select New >
Class.
2.	 In the Name box, type in “MapClient”.
3.	 Click Finish.

	 Listing 5 (see complete listing at
www.esri.com/arcuser) shows the complete
source code listing for MapClient.java. Notice
that the stubs generated in the last step are
imported in the client code. Apache Log4j is used
to log warning and error messages and debug
information for this project. Log4j requires a
configuration file. From your Axis installation
directory, copy log4j.properties file and paste
it under …/arcwebtest/src folder. Initialize the
logger with the following instructions.

private static final Logger log
= Logger.getLogger(MapClient.
class);

If the Internet will be accessed using a proxy
server, the authentication information for the
proxy server must be provided in the Properties
settings shown in Figure 6. The Properties
settings can be ignored if proxy server is not
used.

Listings
src.dir=./src
dist.dir=./dist
build.dir=./build

proxy.host=[your proxy server name or IP address]
proxy.user=[your proxy user id]
proxy.password=[your proxy password]

log4j.properties=log4j.properties

axis.home=[location where axis is installed]
activation.lib=[location of activation.jar]

authentication.wsdl=http://arcweb.esri.com/services/v2/Authentication.
WSDL
mapimage.wsdl=http://arcweb.esri.com/services/v2/MapImage.WSDL

Listing 1: Contents of build.properties

	 <target name=”WSDL2Java” description=”Create Java file from WSDL”>
<taskdef name=”axis-wsdl2java” classname=”org.apache.
axis.tools.ant.wsdl.Wsdl2javaAntTask”>

			 <classpath refid=”axis.classpath” />
		 </taskdef>
	 </target>

Listing 3: The core Ant task <taskdef> is used to define the conversion task.

	 <mapping
namespace=”http://www.themindelectric.com/package/com.esri.
is.services.common.v2/”

package=”com.esri.arcweb.v2”/> etc.

Listing 4: Ant <mapping> tag

	 Properties properties = System.getProperties();
	 properties.put(“http.proxyHost”, [your proxy host name];
	 properties.put(“http.proxyPort”, “80”);
	 properties.put(“http.proxyUser”, [your proxy account name];
	 properties.put(“http.proxyPassword”, [your proxy account password];
	 Properties newprops = new Properties(properties);
	 System.setProperties(newprops);

Listing 6: Properties settings for the proxy server

	 AuthenticationLocator loc = new AuthenticationLocator();
	 IAuthentication auth = loc.getIAuthentication();
	 String token = auth.getToken(username, password);

Listing 7: Obtaining a token from the Authentication Web service

www.esri.com										 ArcUser April–June 2006 47

Developer

	 MapImageSize miSize = new MapImageSize();
	 miSize.setHeight(400);
	 miSize.setWidth(600);
	 	 	
	 Point cirPoint = new Point();
	 cirPoint.setX(-117.199577);
	 cirPoint.setY(34.048364);

	 CircleDescription circle[] = new CircleDescription[1];
	 CircleDescription circle1 = new CircleDescription();
	 	 	
	 circle1.setCenter(cirPoint);
	 circle1.setRadius(5.0);
	 circle1.setRadiusUnits(“Miles”);
	 circle[0] = circle1;

Listing 8: Code for generating a map of Redlands within a five-mile radius of ESRI

	 MapImageOptions miOptions = new MapImageOptions();
	 miOptions.setDataSource(dataSource);
	 miOptions.setDisplayLayers(layers);
	 miOptions.setMapImageFormat(“jpg”);
	 miOptions.setMapImageSize(miSize);
	 miOptions.setReturnLegend(true);
	 miOptions.setCircles(circle);

Listing 9: Using the MapImageOPtions object to communicate with the MapImage Web service

	 MapImageInfo miInfo = mi.getBestMap(miOptions, auth.
getToken(username,

password));
	 log.info(miInfo.getMapUrl());
	 log.info(miInfo.getLegendUrl());

Listing 10: MapImageObject

	 Set the data source. A list of all
data sources available can be found at
arcweb.esri.com/arcwebonline/index.htm.
Many credits are required to access some data
sources, particularly for reports. This limits
testing when using an evaluation license so this
tutorial uses ESRI.Basemap.World as the data
source.

Setting the ESRI Global
Account Information
Set the ESRI Global Account information.
	 String username = [your ESRI
global account name];
	 String password = [your ESRI
global account password];
	 All ArcWeb Services requests expect user
authentication information.
	 Using the ESRI Global Account, a token
can be obtained from the Authentication Web
service. This token can be used to access other
ArcWeb Services later (see Listing 7).
	 The map size parameters are expressed in
pixels. Both height and width of a map must
be within 5 to 6,000 pixels. This exercise will
generate a map of Redlands within a five-mile
radius of ESRI headquarters. The point object
is similar to an ArcObject point. Possible radius
units are miles, kilometers, and decimal degrees
(see Listing 8).
	 The MapImage Web Service needs
information about the data source, layers,
map size, and points of interest. This is done
using the MapImageOption object as shown
in Listing 9. The default map image format is
png8 with possible values of jpg, gif, and png.
Now, return the minimum map for the defined
point of interest. The MapImageInfo object
contains information about the map and legend
URL as shown in Listing 10. This will return the
minimum map for the defined point of interest.

Compiling and
Creating a Distribution
The client can be run directly from Eclipse
by right-clicking on MapClient.java, then
selecting Run As > Java Application. The map
and legend URLs are displayed on the console.
Paste the URLs in a browser window and see
the results. For more information, contact
Amar J. Das, senior programmer, NSTAR, at
amar.das@comcast.net or 781-353-6311.

