
28 ArcUser July–September 2006										 www.esri.com

Learn how to use cursors to manipulate records in feature classes and tables.

Understanding Cursors in ArcObjects

When you hear the term cursor, what comes to
mind? Is it the symbol on a screen that shows
where the next input activity will take place?
In ArcObjects, a cursor refers to a subset of
records that is obtained by applying an attribute
and/or spatial query on a feature class or table.
This subset of records is held in memory
rather than visually displayed. Do not confuse
cursors with selection sets. Selection objects
are used to display the currently selected
features or rows in the ArcMap display, while
cursors are not used for display purposes.
	 For instance, a Search Cursor could be
used to programmatically generate a mailing
list of all parcels of land within a 100-year
floodplain that have a property value greater
than $100,000. ArcObjects provides the
ability to obtain cursors from geographic
datasets (FeatureClasses) as well as regular
database tables. These cursor objects allow
you to manage a subset of records in a single
object. This article will explore the ArcObjects
classes, methods, and properties used to
manipulate cursors.

Cursors versus FeatureCursors
ArcObjects uses distinct classes to manage
subsets of records depending on the data
source. Cursors and FeatureCursors are very
similar objects except that Cursors operate
on Table objects and FeatureCursors operate
on FeatureClasses. In other words, Cursors
are class structures built for the specific
purpose of working with subsets of records
stored in traditional database tables, while
FeatureCursors are built specifically for
working with subsets of records stored in
geographic data structures such as shapefiles,
personal geodatabases, and enterprise
geodatabases.

Types of Cursors
There are three types of cursors found in both
the Cursor and FeatureCursor classes. The
most commonly used type of cursor is the
Search Cursor. It is used in query operations to
return a subset of records that meet the query
conditions. Search Cursors are read-only
cursors that you can iterate through to obtain
information.
	 You cannot use a Search Cursor to insert,
update, or delete records from a table. A second
type of cursor, the Insert Cursor, is specifically
used to insert a new record in a table. The
Update Cursor is used to update or delete

By Eric Pimpler, President, GeoSpatial Training & Consulting, LLC

Table
IClass : IUnknown

CLSID: IUID
EXTCLSID: IUID
Extension: IUnknown
ExtensionProperties: IPropertySet
Fields: IFields
HasOID: Boolean
Indexes: IIndexes
OIDFieldName: String

AddField (in Field: IField)
AddIndex (in Index: IIndex)
DeleteField (in Field: IField)
DeleteIndex (in Index: IIndex)
FindField (in Name: String): Long

ITable : IClass

CreateRow: IRow
CreateRowBuffer: IRowBuffer
DeleteSearchedRows (in QueryFilter:

IQueryFilter)
GetRow (in OID: Long): IRow
GetRows (in oids: Variant, in Recycling:

Boolean): ICursor
Insert (in useBuffering: Boolean): ICursor
RowCount (in QueryFilter: IQueryFilter): Long
Search (in QueryFilter: IQueryFilter, in

Recycling: Boolean): ICursor
Select (in QueryFilter: IQueryFilter, in selType:

esriSelectionType, in selOption:
esriSelectionOption, in selectionContainer:
IWorkspace): ISelectionSet

Update (in QueryFilter: IQueryFilter, in
Recycling: Boolean): ICursor

UpdateSearchedRows (in QueryFilter:
IQueryFilter, in buffer: IRowBuffer)

records in a table. The records returned in an
Update or Search Cursor can be constrained to
match attribute criteria and/or spatial criteria.
	 It is important that you create the proper
type of cursor for the operation that you are
performing. For example, don’t create a
Search Cursor if you are attempting to update
data in a table. As previously mentioned,
Search Cursors are read-only structures so you
won’t be able to update the data. Each cursor
type will be explored in more detail later in
this article.

Cursor Class
As mentioned previously, the Cursor class is
used to create objects that work with database
tables. The Cursor class in ArcObjects is an
instantiable class. This means you must use
another object to obtain an instance of this
class. In this case, the Table class in ArcObjects
is used to create an instance of the Cursor class.
The Table class contains three methods that
can be used to return an instance of the Cursor
class. The type of cursor returned is dependent
upon the method called. Figure 1 shows the

object model diagram for the Table class in
ArcObjects. The ITable interface has three
methods that can be used to return specific
types of cursor objects. The Search, Insert, and
Update methods on ITable are used to return
cursor instances. The names of the methods
correspond to the type of cursor returned.
	 After one of these methods has been called,
ArcObjects returns an instance of ICursor.
Figure 2 shows the object model diagram for
the Cursor class. Search, Insert, and Update all
return an instance of ICursor. ICursor has one
property (Fields) and a number of methods
that can be used to manipulate the subset of
records. Some of the methods available on
ICursor may not be applicable depending on
the type of cursor that you are working with.
For instance, if you created a Search Cursor,
the InsertRow and UpdateRow methods will
return an error if called since you are not
working with Insert or Update Cursors.

Figure 1: Object model diagram for the
Table class

Cursor
ICursor : IUnknown

Fields: IFields

DeleteRow
FindField (in Name: String): Long
Flush
InsertRow (in buffer: IRowBuffer): Variant
NextRow: IRow
UpdateRow (in Row: IRow)

Figure 2: Object model diagram for the
Cursor class

FeatureClass
IFeatureClass : IObjectClass

AreaField: IField
FeatureClassID: Long
FeatureDataset: IFeatureDataset
FeatureType: esriFeatureType
LengthField: IField
ShapeFieldName: String
ShapeType: esriGeometryType

CreateFeature: IFeature
CreateFeatureBuffer: IFeatureBuffer
FeatureCount (in QueryFilter: IQueryFilter):

Long
GetFeature (in ID: Long): IFeature
GetFeatures (in fids: Variant, in Recycling:

Boolean): IFeatureCursor
Insert (in useBuffering: Boolean):

IFeatureCursor
Search (in filter: IQueryFilter, in Recycling:

Boolean): IFeatureCursor
Select (in QueryFilter: IQueryFilter, in selType:

esriSelectionType, in selOption:
esriSelectionOption, in selectionContainer:
IWorkspace): ISelectionSet

Update (in filter: IQueryFilter, in Recycling:
Boolean): IFeatureCursor

Figure 3: Object model diagram for the
FeatureClass

www.esri.com										 ArcUser July–September 2006 29

Developer

QueryFilter
 IQueryFilter : IUnknown

OutputSpatialReference (in FieldName:
String) : ISpatialReference

SubFields: String
WhereClause: String

AddField (in subField: String)

IQueryFilter2 : IQueryFilter

SpatialResolution: Double

SpatialFilter
ISpatialFilter : IQueryFilter

FilterOwnsGeometry: Boolean
Geometry: IGeometry
GeometryEx (in Geometry: IGeometry):

Boolean
GeometryField: String
SearchOrder: esriSearchOrder
SpatialRel: esriSpatialRelEnum
SpatialRelDescription: String

FeatureCursor Class
The FeatureCursor class is very similar to
the Cursor class with the exception that
FeatureCursors are used when you’re working
with geographic datasets rather than traditional
database tables. Geographic datasets are
typically shapefiles and geodatabases in the
form of an ArcObjects FeatureClass. Similar
to the Cursor class, the FeatureCursor class is
an instantiable class created through the use
of a method on a FeatureClass object. Similar
to the ITable interface, the IFeatureClass
interface contains Search, Insert, and Update
methods that can be used to return an instance
of IFeatureCursor.
	 After one of these methods has been called,
an instance of IFeatureCursor will be returned.
The properties and methods available on
IFeatureCursor are functionally identical to
those on ICursor, although the method names
differ slightly, for instance, InsertFeature
versus InsertRow.

of greater than $100,000 (using an attribute
query). Remember that spatial filters can only
be applied to a FeatureClass. Attempting to
apply a spatial filter to a database table will
result in an error because there is no geographic
component to which the filter can be applied.
Let’s look at the QueryFilter and SpatialFilter
classes in more detail.

QueryFilter
Before producing a Cursor or FeatureCursor
from a dataset, you can define a QueryFilter
that specifies criteria limiting the number
of records returned. Because QueryFilter
is a creatable class, you can use the New
keyword in Visual Basic for Applications to
create an instance of this class. Typically you
will work with the IQueryFilter interface on
the QueryFilter class to define an attribute
constraint. The WhereClause property is
used to limit the query. The code sample in

Continued on page 30

FeatureCursor
IFeatureCursor : IUnknown

Fields: IFields

DeleteFeature
FindField (in Name: String): Long
Flush
InsertFeature (in buffer: IFeatureBuffer):

Variant
NextFeature: IFeature
UpdateFeature (in Object: IFeature)

Figure 4: Object model diagram for
FeatureCursor

Figure 6: Object model diagram for
QueryFilter

The QueryFilter (Figure 6) could then be
applied to a Table or FeatureClass as seen in
the code in Figure 7.

SpatialFilter
A SpatialFilter (Figure 8) can be applied to
produce a subset of records based on spatial
criteria. It can be applied to FeatureClasses

Figure 8: Object model diagram for
SpatialFilter

Applying Attribute and Spatial Constraints
Look at the object model diagrams for
FeatureClass and Table and look at the Search,
Insert, and Update methods. Notice that
each method is used to return a cursor that
contains a parameter specifying an instance of
IQueryFilter. Note the IQueryFilter parameter.
IQueryFilter is an object that can be created to
constrain the subset of records that is created
in memory.
	 For instance, if you are querying a parcel
geodatabase, you might want to constrain the
results to parcels with a value greater than
$100,000. You can apply this type of constraint
through the IQueryFilter interface. In addition,
when working with FeatureClass objects,
you can also apply an optional SpatialFilter
through the ISpatialFilter interface. You could
return all parcels within a floodplain (using
the spatial filter) that had a property value

Dim pQueryFilter as IQueryFilter
Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = “Prop_Val >= 100000”

Figure 5: Limiting parcels returned using the WhereClause

Figure 5 could be used to limit the parcels
returned to only those with a value greater
than $100,000.

Dim pCursor As IFeatureCursor
Set pCursor = pFeatureClass.Search(pQueryFilter, True)

Figure 7: Applying QueryFilter to a FeatureClass

but not Tables. SpatialFilter is a creatable class
so the New keyword can be used to create
an instance of this class. SpatialFilter uses a
Geometry property and a SpatialRel property
to define the search criteria. The Geometry
property is used to specify a particular
geographic feature. SpatialRel can be set to
one of a predefined set of constants such as
intersects, overlaps, or touches.
	 Because SpatialFilter is a type of
QueryFilter, it also has access to all the methods
and properties on that class. Therefore, you can
use the WhereClause property on IQueryFilter
to combine spatial and attribute constraints.
See the code sample in Figure 9 for an

30 ArcUser July–September 2006										 www.esri.com

Developer

Understanding Cursors in ArcObjects
Continued from page 29

example of how you can combine QueryFilter
and SpatialFilter to apply spatial and attribute
constraints in a single query.

Accessing Records in a Cursor
Now that you have a good understanding of
the general mechanics of creating cursors,
let’s look at how you can access the records
returned in a cursor. Remember that cursors
are just an in-memory collection of records
returned from a Table or FeatureClass.
	 When a cursor is first created, an associated
pointer is also created. You access records in
a cursor one row at a time. The pointer helps
keep track of which row is currently being
accessed. Upon initialization, the pointer
actually sits above the first record. To get to
the first row in the cursor, you must make a
call to the NewRow (Table) or NextFeature
(FeatureClass) method. These two methods
advance the pointer to the next record in the
cursor. The first time these methods are called,
the pointer advances to the first record. Each
additional call to these methods returns the
next record.
	 At some point you will reach the end of the
records available in the cursor. Any additional
call to NewRow or NextFeature will return
the Nothing object, indicating that the end
of the cursor has been reached. Cursors in
ArcObjects are forward-moving objects that
will not allow you to move backward through
the cursor. Once you have advanced to record
two in the cursor, you can’t go back to record
one.

Conclusion
ArcObjects cursor structures provide you
with the ability to query, insert, update, and
delete records from FeatureClasses and
Tables. These easy-to-create and flexible
cursor structures are in-memory collections of
records that can be constrained through the use
of filters applied through the QueryFilter and
SpatialFilter classes. Once generated, these
cursor structures provide an easy-to-navigate,
forward-moving structure that can be used to
investigate the contents of individual records.
For more information, contact

Eric Pimpler
President, GeoSpatial Training & Consulting, LLC
E-mail: eric@geospatialtraining.com
Web: www.geospatialtraining.com
Tel.: 210-260-4992

Dim pSpatialFilter As ISpatialFilter
Set pSpatialFilter = New SpatialFilter
Set pSpatialFilter.Geometry = pFloodPolygon
pSpatialFilter.SpatialRel = esriSpatialRelContains
pSpatialFilter.WhereClause = “prop_val > 100000”
Set pFCursor = pCustomerLayer.Search(pSpatialFilter,True)

Figure 9: Apply spatial and attribute constraints in a single query using both QueryFilter and
SpatialFilter.

