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Obtaining reliable environmental measurements can be costly and 
laborious, and in many cases, environmental contaminant samples 
are not collected where people live or work. Th e ability to predict 
values where observations are not available is, therefore, very impor-
tant. Interpolation is the process of obtaining a value for a variable of 
interest at a location where data has not been observed, using data 
from locations where data has been collected. 
 Th ere are many methods for interpolating spatial data. Th ey fall 
into two broad classes: deterministic and probabilistic. Deterministic 
methods use predefi ned functions of the distance between observa-
tion locations and the location for which interpolation is required 
(for example, inverse distance interpolation). Probabilistic methods 
have a foundation in statistical theory. Th ese predictors quantify the 
uncertainty associated with the interpolated values. Th e require-
ment of providing information on prediction uncertainty limits the 
choice of interpolators to statistical ones.
 Development of reliable automatic statistical interpolation models 
has been a hot issue in the GIS community for a long time. However, 
this is a very challenging task because each statistical model is based 
on the users’ data and the data is often so complex that it is extremely 
diffi  cult to describe it mathematically without interaction. 
 Th is article briefl y discusses statistical interpolation features 
and then provides some details about the empirical Bayesian krig-
ing (EBK) model implemented in ArcGIS 10.1 Geostatistical Analyst. 
Extensive testing using a large variety of data showed that EBK is a 
reliable automatic interpolator. Th is kriging model is also available 
as a geoprocessing tool that can be used in ModelBuilder and Python 
scripts.

Kriging
Kriging is the name given to a class of statistical techniques for 
optimal spatial prediction. It was developed by Lev Gandin in 1959 
for meteorological applications. It has been used in many other 
disciplines, including agriculture, mining, and the environmental 
sciences. 
 Kriging is a probabilistic predictor and, as such, assumes a sta-
tistical model for the data. Kriging predictors have standard errors 
that quantify the uncertainty associated with the predicted values. 
Kriging predictors are called optimal predictors because the predic-
tion error is minimized and, on average, the predicted value and the 
true value coincide. Kriging predictors: 
•	 Have smaller prediction uncertainty than other prediction models 
•	 Have the ability to fi lter out measurement errors
•	 Use information on the correlation between the variable of inter-

est and covariates

Empirical Bayesian Kriging
Implemented in ArcGIS Geostatistical Analyst
 By Konstantin Krivoruchko, Senior Research Associate, Software Development Team, Esri

When kriging predictors are applied to the analysis of radioactive 
contamination, they can answer questions such as, What is the prob-
ability that food contamination exceeds the radioecological stand-
ard at the specifi ed location? and provide estimates of average and 
total contamination in specifi ed areas. 
 Kriging uses a semivariogram—a function of the distance and 
direction separating two locations—to quantify the spatial depend-
ence in the data. A semivariogram is constructed by calculating half 
the average squared diff erence of the values of all the pairs of meas-
urements at locations separated by a given distance h. Th e semivari-
ogram is plotted on the y axis against the separation distance h. 
 Figure 1a shows the semivariogram values for the pairs of points 
(shown in red) and their averages for a set of the distance intervals 
between the points (shown as blue crosses). Th e blue line in Figure 
1a shows the estimated semivariogram model. Th is semivariogram 
model is then used to defi ne the weights that determine the contri-
bution of each observed data point to the prediction of new values at 
unsampled locations.
 Th ere are some statistical assumptions behind kriging. Th e main 
assumption is stationarity (spatial homogeneity). If data is station-
ary, the data mean and the semivariogram are the same at all loca-
tions in the data extent. If this assumption is held, just a few krig-
ing model parameters have to be estimated from the data to make 

 Figure 1a: The semivariogram values for the pairs of points (red), 
their averages (blue crosses), and the estimated semivariogram 
model (blue line.) 



optimal predictions and valid statistical inferences.
 If the data distribution is Gaussian, the best predictor is one that 
uses a linear combination of the nearby data values. For other distri-
butions, however, the best predictor is often nonlinear and, therefore, 
more complex. Th e data can be transformed to follow a Gaussian 
distribution. Th en it is possible to accurately back transform kriging 
predictions to the original data scale, which can be done in ArcGIS 
Geostatistical Analyst. 
 Classical kriging also assumes that the estimated semivariogram 
is the true semivariogram of the observed data. Th is means the 
data was generated from Gaussian distribution with the correlation 
structure defi ned by the estimated semivariogram. Th is is a very 
strong assumption, and it rarely holds true in practice. Hence, action 
should be taken to make the statistical model more realistic. 

Introducing Empirical Bayesian Kriging
EBK diff ers from classical kriging methods by accounting for the error 
introduced by estimating the semivariogram model. Th is is done by 
estimating, and then using, many semivariogram models rather than 
a single semivariogram. Th is process entails the following steps:
1. A semivariogram model is estimated from the data.
2. Using this semivariogram, a new value is simulated at each of the 

input data locations.
3. A new semivariogram model is estimated from the simulated 

data. A weight for this semivariogram is then calculated using 
Bayes’ rule, which shows how likely the observed data can be gen-
erated from the semivariogram. 

 Figure 1b: The spectrum of the semivariogram models produced 
by EBK 

Æ Figure 2: Spatial data simulated using power semivariogram 
model with power values of 0.1, 1.0, and 1.9 (from top to bottom)



8 au  Fall 2012  esri.com

	 Steps 2 and 3 are repeated. With each repetition, the semivariogram 
estimated in step 1 is used to simulate a new set of values at the input 
locations. The simulated data is used to estimate a new semivariogram 
model and its weight. Predictions and prediction standard errors are 
then produced at the unsampled locations using these weights.
	 This process creates a spectrum of semivariograms. Each semi-
variogram is an estimate of the true semivariogram from which the 
observed process could be generated. Figure 1b shows the spectrum 
of semivariogram models plotted together. The median of the dis-
tribution is shown with a solid red line. The 25th and 75th percen-
tiles are colored with red dashed lines. The width of the blue lines is 
proportional to the semivariogram weights so that the models with 
smaller weights are shown by thinner lines. 
	 The default kriging model in EBK is called the intrinsic random 
function of order 0, and the spatial correlation model is the power 
model where b, c, and α (the allowed value of the power value α is be-
tween 0 and 2) are the model parameters. This correlation model cor-
responds to fractional Brownian motion, also known as the random 
walk process. It consists of steps in a random direction and filters out 
a moderate trend in the data. 
	 Figure 2 shows simulated surfaces with three different power 
values of α: α=0.1 (top), α=1 (middle), and α=1.9 (bottom). Zooming 
in on any part of the surface shows a similar random walk surface. 
The correlation model with α=1, a linear model shown in the middle 
image, corresponds to the regular Brownian motion, process with 
independent step increments. However, the increments are depend-
ent on fractional Brownian motion. If there is an increasing pat-
tern in the previous steps, then it is likely that the current step will 
increase when the power value of α is greater than 1 and decrease 
when α is less than 1. In Figure 2, the simulated surface with small 

α (top image) looks like a mixture of a moderate trend and random 
noise while the simulated surface with large α (bottom image) shows 
nearly noiseless large scale data variation. 
	 To demonstrate the use of EBK, six data subsets of measured radi-
ocesium (137Cs) soil contamination were modeled for locations near 
the Fukushima Daiichi Nuclear Power Station in Japan following 
the accident that occurred at that facility in 2011. They are shown in 
Figure 3a. Maps of the results of each subset are qualitatively simi-
lar: they show the same characteristics as the maps in Figure 2. This 
demonstrates that the default EBK model provides a good method 
for predicting radioactive contamination for small areas. 
	 Using a distribution of semivariogram models—instead of just 
one model—offers a big advantage over classical kriging models. 
However, EBK has several additional advantages: the model can be 
used to interpolate nonstationary data for large areas and the data 
can be transformed locally to a Gaussian distribution. 
	 With the EBK model, in the case of large datasets, the input data 
is first divided into subsets of a specified size that may or may not 
overlap. In each subset, distributions of the semivariograms are 
produced. Then, for each location, a prediction is generated using 
a semivariogram distribution from one or more subsets. Each data 
subset uses models defined by nearby values, rather than being influ-
enced by very distant factors, yet when all the models are combined, 
they create a complete picture, just like the “face” in the Giuseppe 
Arcimboldo painting entitled Fruit Basket is created by combining 
groupings of fruits (Figure 3b). 
	 Although the default EBK model makes the data distribution of 
the residuals closer to a Gaussian distribution by removing the local 
trend, the residuals distribution can still be non-Gaussian. In this 
case, a model with the data transformation option may produce 

 Figure 3a: Predictions of the radiocesium soil contamination in six 
data subsets 

 Figure 3b: Fruit Basket by Giuseppe Arcimboldo (ca. 1527–1593)
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better predictions. In Geostatistical Analyst, this can be identifi ed 
using the model diagnostics. 
 Plotting the 137Cs soil contamination distributions in several areas 
of the data extent shows that they are clearly non-Gaussian and 
diff er by region as shown in Figure 4a. Th erefore, varying local data 
distribution clearly forms an essential feature of the optimal inter-
polation model. EBK provides an option to transform the observed 
process to a Gaussian process, using the estimated data transforma-
tion function as illustrated in Figure 4b. 
 EBK with the data transformation option estimates the data dis-
tribution many times using the following algorithm: 
1. Th e data is transformed to a Gaussian distribution and a semivari-

ogram model is simultaneously estimated from the data.
2. Using this semivariogram, new data is unconditionally simulated 

and then back transformed at each of the input data locations.
3. Th e new data is transformed and a new semivariogram model is 

simultaneously estimated from the simulated data.
4. Steps 2 and 3 are repeated a specifi ed number of times. Each rep-

etition produces a new transformation and semivariogram.
5. Weights for the semivariograms are calculated using Bayes’ rule.
6. Predictions and prediction standard errors are made using 

weights and then back transformed with bias correction.

 Th ese associated prediction uncertainties should be considered 
when using these results for decision-making purposes. Figure 5a 
shows 137Cs soil contamination prediction 
(Ci/km2) and prediction standard error 
maps produced by EBK for areas near the 
Fukushima Daiichi Nuclear Power Station. 
[A curie (Ci) is a unit used to measure the in-
tensity of radioactivity of a sample.] Figure 5b 
shows the estimated 137Cs distributions (with 
the median shown in red) for one location 
inside the data extent. 
 Radioactive decay provides an interest-
ing example because it is a Poisson pro-
cess rather than the more straightforward 
Gaussian process. Th e essential property of 
any Poisson process is that its mean is equal 
to its variance. Th erefore, the variability of 
the predictions tends to be smaller for ob-
served data of lower values and larger for 
observed data with higher values. Th is is il-
lustrated in Figure 5a. 
 Interpreting predictions together with 

 Figure 4b: The 
data transformation 
process 

 Figure 4a: The 
distribution of 
radiocesium soil 
contamination data 
in six data subsets 
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the prediction standard errors provides a better understanding of pos-
sible contamination levels. Analyzing two labeled locations in Figure 5a 
in more detail reveals that the predictions and their associated predic-
tion standard errors are (1) 14.72 and 3.52 and (2) 2.19 and 0.52.
 Th e radioactive soil contamination at these locations is approxi-
mately (95 percent prediction intervals) 14.72 ± 3.52 × 1.96 ≈ 14.72 ± 
6.9 Ci/km2 and 2.19 ± 0.52 × 1.96 ≈ 2.19 ± 1.02 Ci/km2, respectively. 
Th erefore, the “true” contamination in the fi rst location could be 
larger than 20 Ci/km2, although the predicted value is smaller than 
15 Ci/km2 . If the upper permissible limit of soil contamination is 
15 Ci/km2 (as it was in the former Soviet Union), living in the fi rst 
location is rather unsafe and people living nearby should be evacu-
ated. At the second location, the “true” contamination could be as 
much as 3 Ci/km2, given a predicted value close to 2 Ci/km2. 

Conclusion
Empirical Bayesian kriging as implemented in the ArcGIS 10.1 
Geostatistical Analyst extension provides both a straightforward 
and robust method of data interpolation. For more information on 
using EBK, see the online help for the ArcGIS Geostatistical Analyst 
extension. To learn more about spatial statistics, read Spatial 
Statistical Data Analysis for GIS Users published by Esri Press.
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 Figure 5b: Estimated 137Cs soil contamination distributions at one 
location close to the Fukushima Daiichi Nuclear Power Station.

 Figure 5a: 137Cs soil contamination prediction and prediction standard error maps; 95 percent prediction intervals for locations labeled 1 
and 2 are [7.82, 21.62] and [1.17, 3.21] Ci/km2. 




