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The geographic approach involves measuring the earth, organizing the resultant

data, and analyzing it to understand spatial processes and relationships. GIS

technologies are used extensively for the latter stages of the geographic approach

but less often for sampling, an important component of measurement. This article

shows how to use ArcGIS 10 for Desktop to create an efficient spatial sampling or

suitability design using the Create Spatially Balanced Points geoprocessing tool

available with the ArcGIS Geostatistical Analyst extension and other geoprocessing

tools provided with the core product.
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& Figure 1: Neither random nor
systematic sampling is efficient if the
underlying phenomenon is complex and
changing rapidly; (A) random samples;
(B) 20 systematic samples; (C) complete
surface. (Source: Konstantin Krivoruchko)
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N Figure 2a: Ohio air pollution
data aggregated to 75 random
polygons
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V Figure 2b: 3D view showing lack
of smoothness in averaged data
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M Figure 2c: Averaged
data smoothed using areal
interpolation
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Scientists synthesize knowledge through the process of collecting
and classifying empirical data (i.e., samples) with the ultimate goal
of generalizing their observations, through inductive reasoning, into
universal laws. The laws are required to make inference from the ob-
served to the unobserved data.

However, Immanuel Kant showed that empirical observations
alone cannot lead to universal knowledge (although the knowledge
that universal knowledge actually exists) but must be tempered by
what researchers believe is the appropriate conceptual description
of reality. This is independent of observational knowledge that exists
in the researcher’s mind and helps make sense of empirical data.
Kant called this type of knowledge a priori knowledge.

This article describes a workflow for collecting a relatively small
number of samples to reconstruct an unobserved or partially ob-
served spatial variable with reasonable uncertainty using a priori
knowledge about the phenomenon under study.

The set of geographic locations where measurements are taken
is called a spatial sampling design. An efficient sampling design
specifies sampling locations that allow the researcher to confidently
estimate the value of the sampled variable, such as pollution, at
unsampled locations. The workflow for developing a probability-
based spatial sampling design that balances the conflicting goals of
maintaining high prediction accuracy and minimizing costand @
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N Figure 3: Ohio air pollution Prediction Standard Error
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effort of sampling is discussed. This workflow can also be used to
generate probability-based samples along a road or stream network
for site selection analysis.

There are several classic sampling designs that can be used to
select sites within a geographic study area. Simple random sampling
randomly selects locations across the entire study area, clustered
random sampling intensively samples around randomly sampled
locations, and systematic sampling selects locations at regular in-
tervals across the study area.

However, all these sampling designs assume that there is no prior
knowledge about the variable of interest in the study area. An exam-
ple of the inefficiency of random and systematic sampling designs is
shown in Figure 1. Even with a relatively large sample size (20 per-
cent), neither of the sampling designs shown in Figure la and 1b
yields a clear picture of the underlying phenomenon shown in Figure
1c. These sampling designs may be adequate for a phenomenon that
changes smoothly over the study area but are not efficient for data
that is spatially correlated and changes rapidly across the landscape.
There is a clear need for an alternative way of choosing optimal sam-
pling locations.

An Alternative Way of Sampling: Spatially
Balanced Design

The number and location of samples are often influenced by econom-
ic considerations. Creating an optimal sampling design requires
balancing accuracy of prediction (requiring more samples) with
minimizing the cost of sampling (limiting the number of samples
and attendant cost of gathering them).

If the variable of interest is spatially correlated (i.e., values nearby
are more similar than values farther apart), then taking samples
close to one another may not increase prediction accuracy and will
increase costs. A well spread out sample is sometimes called spa-
tially balanced.

In a spatially balanced random sample design, a probability
raster defines the a priori sample intensity function (or the number
of samples per unit area). This inhomogeneous input raster layer is
transformed into an equiprobable surface from which the required
number of random points is selected using a systematic sampling
algorithm (shown in Figure 2b). This guarantees that the samples
are spread out over the study area. Since all raster cells with nonzero
inclusion probability within a study area have a chance of being se-
lected, the design is called a random survey.

Spatially balanced random survey design is very flexible because
the inclusion probabilities can reflect both statistical data features
(such as the kriging prediction standard error) and all relevant geo-
graphic information.
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1 Figure 4a: Sigmoidal function used to rescale distance from
road to suitability score

V Figure 4b: Example of roads suitability surface in Summit
County, Ohio
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Creating a Sampling Design for Measuring
Pollution Deposition

Like many Midwestern counties, Summit County, Ohio, is located in
aregion where there is significant manufacturing activity and coal
power generation still takes place. The county has high population
density and is bisected by seven major state and interstate highways.
These factors suggest a need to accurately monitor the levels of at-
mospheric pollution deposition across the county.

Data from Summit County will be used to demonstrate how to
construct an a priori probability surface to select optimal sampling
locations. Considerations in creating the a priori probability surface
include estimating total air pollution from known pollution sources,
predicting uncertainty of current air pollution measurements, and
using best practices for selecting undisturbed sampling locations.
The overall goal of the design is to select locations in the county that
have both a high level of atmospheric pollution and a high level of
prediction uncertainty from the existing air pollution monitoring
network yet are located in undisturbed areas so measurements will
be useful for environmental modeling.

Estimating Distribution of Air Pollution from
Known Pollution Sites

The US Environmental Protection Agency (EPA) maintains a data-
base of the release of toxins to the air, water, and land called the
Toxic Release Inventory (TRI) (www.epa.gov/tri/). The amount of
pollution released to the air from 3,448 pollution sites in the state
of Ohio was downloaded from the TRI database. Even though this
workflow will select sampling sites only in Summit County, air pollu-
tion distribution should be estimated for the entire state to mitigate
the external boundary problem common in ecological analysis.

An estimate of the air pollution levels across the state could be
immediately created using one of the kriging models, but this would
be inappropriate given that pollutants were released in different
amounts, at different times of the year, and under different weather
conditions. Some preprocessing of the data is necessary before it can
be transformed into a prediction surface. Averaging the data to a
sufficiently large number of random polygons and smoothing using
a polygon-based interpolator can be done using geoprocessing tools
in ArcGIS for Desktop.

Use the Create Random Points tool (Data Management toolbox) to
generate 75 random points within the broader study area. This number
is sufficient for use in kriging. Use the Minimum Allowed Distance
parameter to ensure points are spread out across the study area. @
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A Figure 5a: Ten spatially Probability of Selection

balanced candidate sites in
Summit County, Ohio .

High: 1

Low: 0

Generate Thiessen polygons around each of the 75 random
points using the Create Thiessen Polygons tool (Analysis toolbox >
Proximity toolset).

Spatially join and average the air pollution data to the Thiessen
polygons using the Joins and Relates dialog box accessed from
ArcMap’s table of contents (Figure 2a).

Figure 2b shows a 3D representation of the pollution data aggre-
gated to polygons. Geostatistical Analyst has a kriging model called
areal interpolation, which has been designed specifically for data
that has been averaged over polygons. Given the Thiessen polygons
and the average air pollution estimates, a prediction surface is pro-
duced for all points in the study area (Figure 2c). This surface will
serve as a smooth approximation of the industrial air contamination.

Determining Uncertainty of Existing Air Pollution
Measurements

The US EPA maintains a database of air quality measurements taken
throughout the United States and its territories (www.epa.gov/
airdata/index.html). Data on particulate matter (i.e., matter 2.5 mi-
crometers and smaller in diameter) was extracted for the 46 moni-
toring sites located in Ohio. These measurements serve as a proxy for
estimating the uncertainty in the existing air pollution monitoring
system.

One goal of the sampling design is to take new samples in areas
where the uncertainty of prediction from existing measurements is
high. Using the values from the 46 monitoring sites in Ohio, a predic-
tion surface and standard error of prediction surface was created
for the state using empirical Bayesian kriging. This tool was selected
because it requires minimal interactive modeling and its standard
errors of prediction are more accurate than standard errors of pre-
diction from other kriging models. Darker areas of Figure 3 show
higher levels of uncertainty of air pollution prediction.

Sampling in Undisturbed Areas
Because this study is looking at cumulative deposition of pollution, it
isimportant to avoid taking samples too close to roads because road
traffic resuspends particles, creating what is known as fugitive dust.
The US EPA recommends siting air pollution and deposition moni-
toring sites in flat, uniform, and open spaces at least 200 meters (m)
from alightly traveled secondary road, 500 m from a heavily traveled
secondary road, or 2 kilometers from a major highway.

However, in an urban county, such as Summit County, which has
a dense road network, these parameters would exclude most of the
county. As acompromise, the Euclidean distance to the nearest road
was calculated, and the distances were rescaled using a sigmoi-
dal function shown in Figure 4a. The effect of this function is that
locations close to a road (0-50 m) will have a very low suitability.
Once the distance from a road reaches 50 m, suitability begins to
gradually increase. When the distance reaches approximately 250 m,
suitability levels off and all distances greater than this distance are
nearly equally preferred (as shown in Figure 4b).
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Putting It All Together

Each of the three rasters generated from this workflow represents a
goal of the sampling design. To consider all three goals at the same
time, the rasters must be rescaled and combined. Rescaling trans-
forms the rasters to a common measurement scale so that they will
have equal influence in the site selection.

Rasters were transformed to a 0 to 1 scale using the formula (raster
value - minimum raster value)/(maximum raster value - raster min).
rasters were combined using the formula (pollution raster + predic-
tion uncertainty raster) * roads raster. Multiplying by the roads layer
(where locations close to the road have very low suitability scores)
dramatically reduces the final suitability for locations close to aroad.

The combined raster is a surface where higher values represent
more desirable locations for sampling. This final raster was also
rescaled to a 0 to 1 scale to represent a probability range. The higher
the value in this raster, the more likely that the cell will be included
in the sample design. In this example, the pollution and prediction
uncertainty rasters were considered equally important in determin-
ing site suitability, so they were simply added together. However,
more importance could be assigned to one of the factors by multi-
plying it by a weight before adding the rasters together.

Figures 5a and 5b show the resultant inclusion probability raster
and two sets of candidate sample sites. Note that each sample reali-
zation is related to the underlying spatial structure of the sampling
suitability raster created earlier. The samples are also spatially bal-
anced. If Thiessen polygons were drawn around each sample loca-
tion, all polygons would have somewhat similar areas.

Other Applications of the Workflow

This workflow can be used for other applications such as locating
sampling sites along a stream or road network, which is often a
difficult task in GIS. Using the Feature To Raster tool (Conversion
toolbox), the road or stream network can be converted to a raster,
and locations on the stream or road can be assigned a value of 1 and
all other locations assigned a value of 0. Using this raster as input to
the Create Spatially Balanced Points geoprocessing tool results in a
random sample of points along the network (Figure 6a). Alternatively,
locations along the stream or road could be given higher inclusion
probabilities based on proximity to features such as dams or envi-
ronmentally sensitive areas.

Raster-based site selection is one of the most common workflows
in GIS. In this method, raster layers are rated, weighted, and over-

A Figure 5b: Thirty spatially Probability of Selection
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laid to create a final suitability raster. These analyses are often per-
formed at fine raster resolutions using 30 m cells to capture rapidly

Summit County, Ohio

changing criteria such as elevation or land use. This can result in a
“salt and pepper” effect on the suitability raster that contains several
isolated cells with high suitability values (Figure 6b).

To locate potential sites for three new large sporting goods stores,
for example, individual cells of approximately 0.2 acres each (shown
in Figure 6b) would be too small to site such large facilities. To solve
this problem would require resampling the final suitability @&
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A Figure 6a: Fifteen spatially balanced sampling locations selected
along a sinuous river. All locations along the stream are equally
probable.

7 Figure 6b: Suitability raster for siting a large sporting goods store.
Notice several isolated cells, which have high suitability but are not
large enough to site a store. Darker colors indicate higher suitability.

- Figure 6c¢: Suitability raster resampled to approximately 5-acre cell
size. Stars represent potential store locations. Polygons represent
store catchment areas. Darker colors indicate higher suitability.

raster to a cell size appropriate for the facility being sited. Figure
6¢ shows the suitability raster resampled to a 5-acre cell size. After
rescaling this raster to a 0 to 1 scale, it can be used as input to the
Create Spatially Balanced Points tool. Figure 6¢ shows potential
sites for three stores. These sites are spatially balanced and were se-
lected based on their suitability. The Thiessen polygons around each
of the sites can be thought of as the catchment area for each store.

Conclusion

Unequal probability-based sampling using the Create Spatially
Balanced Points tool allows the researcher to use a priori knowledge
of a problem to create an intelligent and efficient sampling or suit-
ability design. The tool uses continuously varying inclusion proba-
bilities that can be readily constructed using a variety of geographic
layers and the researcher’s expert knowledge. This powerful, flexible,
and easy-to-use tool can lead to a reduction in the cost and effort of
sampling designs used to evaluate patterns and trends in geograph-
ic data. For more information on creating spatially balanced points,
see the resources listed under Further Reading.
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