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The geographic approach involves measuring the earth, organizing the resultant 
data, and analyzing it to understand spatial processes and relationships. GIS 
technologies are used extensively for the latter stages of the geographic approach 
but less often for sampling, an important component of measurement. This article 
shows how to use ArcGIS 10 for Desktop to create an efficient spatial sampling or 
suitability design using the Create Spatially Balanced Points geoprocessing tool 
available with the ArcGIS Geostatistical Analyst extension and other geoprocessing 
tools provided with the core product.

Unequal 
Probability-Based 

 Spatial
Sampling

 Figure 1: Neither random nor 
systematic sampling is efficient if the 
underlying phenomenon is complex and 
changing rapidly; (A) random samples; 
(B) 20 systematic samples; (C) complete 
surface. (Source: Konstantin Krivoruchko)
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 Figure 2b: 3D view showing lack 
of smoothness in averaged data
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Scientists synthesize knowledge through the process of collecting 
and classifying empirical data (i.e., samples) with the ultimate goal 
of generalizing their observations, through inductive reasoning, into 
universal laws. The laws are required to make inference from the ob-
served to the unobserved data. 
	 However, Immanuel Kant showed that empirical observations 
alone cannot lead to universal knowledge (although the knowledge 
that universal knowledge actually exists) but must be tempered by 
what researchers believe is the appropriate conceptual description 
of reality. This is independent of observational knowledge that exists 
in the researcher’s mind and helps make sense of empirical data. 
Kant called this type of knowledge a priori knowledge. 
	 This article describes a workflow for collecting a relatively small 
number of samples to reconstruct an unobserved or partially ob-
served spatial variable with reasonable uncertainty using a priori 
knowledge about the phenomenon under study. 
	 The set of geographic locations where measurements are taken 
is called a spatial sampling design. An efficient sampling design 
specifies sampling locations that allow the researcher to confidently 
estimate the value of the sampled variable, such as pollution, at 
unsampled locations. The workflow for developing a probability-
based spatial sampling design that balances the conflicting goals of 
maintaining high prediction accuracy and minimizing cost and 

 Figure 2a: Ohio air pollution 
data aggregated to 75 random 
polygons

 Figure 2c: Averaged 
data smoothed using areal 
interpolation47–6,162

6,163–18,983

18,984–50,192

50,193–106,954

106,955–165,490

Air Pollution Site

Aggregated Air Pollution (pounds)

47–1,296

1,296–5,140

5,140–16,971

16,971–53,390

53,390–165,490

Aggregated Air Pollution (pounds)



w w w. e x t e n s i o n . u c r . e d u / e s r i

•  Project Based Curriculum

•  Field Trips & Tours

•  Networking Events

•  Software Training

17th AnnuAl 

GIS Summer School

July-August summer 2013

12 au Spring 2013 esri.com

 Figure 3: Ohio air pollution 
prediction standard error
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eff ort of sampling is discussed. Th is workfl ow can also be used to 
generate probability-based samples along a road or stream network 
for site selection analysis.
 Th ere are several classic sampling designs that can be used to 
select sites within a geographic study area. Simple random sampling 
randomly selects locations across the entire study area, clustered 
random sampling intensively samples around randomly sampled 
locations, and systematic sampling selects locations at regular in-
tervals across the study area.
 However, all these sampling designs assume that there is no prior 
knowledge about the variable of interest in the study area. An exam-
ple of the ineffi  ciency of random and systematic sampling designs is 
shown in Figure 1. Even with a relatively large sample size (20 per-
cent), neither of the sampling designs shown in Figure 1a and 1b 
yields a clear picture of the underlying phenomenon shown in Figure 
1c. Th ese sampling designs may be adequate for a phenomenon that 
changes smoothly over the study area but are not effi  cient for data 
that is spatially correlated and changes rapidly across the landscape. 
Th ere is a clear need for an alternative way of choosing optimal sam-
pling locations.

An Alternative Way of Sampling: Spatially 
Balanced Design
Th e number and location of samples are often infl uenced by econom-
ic considerations. Creating an optimal sampling design requires 
balancing accuracy of prediction (requiring more samples) with 
minimizing the cost of sampling (limiting the number of samples 
and attendant cost of gathering them). 
 If the variable of interest is spatially correlated (i.e., values nearby 
are more similar than values farther apart), then taking samples 
close to one another may not increase prediction accuracy and will 
increase costs. A well spread out sample is sometimes called spa-
tially balanced.
 In a spatially balanced random sample design, a probability 
raster defi nes the a priori sample intensity function (or the number 
of samples per unit area). Th is inhomogeneous input raster layer is 
transformed into an equiprobable surface from which the required 
number of random points is selected using a systematic sampling 
algorithm (shown in Figure 2b). Th is guarantees that the samples 
are spread out over the study area. Since all raster cells with nonzero 
inclusion probability within a study area have a chance of being se-
lected, the design is called a random survey.
 Spatially balanced random survey design is very fl exible because 
the inclusion probabilities can refl ect both statistical data features 
(such as the kriging prediction standard error) and all relevant geo-
graphic information.
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 Figure 4a: Sigmoidal function used to rescale distance from 
road to suitability score

 Figure 4b: Example of roads suitability surface in Summit 
County, Ohio
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Creating a Sampling Design for Measuring 
Pollution Deposition 
Like many Midwestern counties, Summit County, Ohio, is located in 
a region where there is signifi cant manufacturing activity and coal 
power generation still takes place. Th e county has high population 
density and is bisected by seven major state and interstate highways. 
Th ese factors suggest a need to accurately monitor the levels of at-
mospheric pollution deposition across the county. 
 Data from Summit County will be used to demonstrate how to 
construct an a priori probability surface to select optimal sampling 
locations. Considerations in creating the a priori probability surface 
include estimating total air pollution from known pollution sources, 
predicting uncertainty of current air pollution measurements, and 
using best practices for selecting undisturbed sampling locations. 
Th e overall goal of the design is to select locations in the county that 
h ave both a high level of atmospheric pollution and a high level of 
prediction uncertainty from the existing air pollution monitoring 
network yet are located in undisturbed areas so measurements will 
be useful for environmental modeling.

Estimating Distribution of Air Pollution from 
Known Pollution Sites
Th e US Environmental Protection Agency (EPA) maintains a data-
base of the release of toxins to the air, water, and land called the 
Toxic Release Inventory (TRI) (www.epa.gov/tri/). Th e amount of 
pollution released to the air from 3,448 pollution sites in the state 
of Ohio was downloaded from the TRI database. Even though this 
workfl ow will select sampling sites only in Summit County, air pollu-
tion distribution should be estimated for the entire state to mitigate 
the external boundary problem common in ecological analysis. 
 An estimate of the air pollution levels across the state could be 
immediately created using one of the kriging models, but this would 
be inappropriate given that pollutants were released in diff erent 
amounts, at diff erent times of the year, and under diff erent weather 
conditions. Some preprocessing of the data is necessary before it can 
be transformed into a prediction surface. Averaging the data to a 
suffi  ciently large number of random polygons and smoothing using 
a polygon-based interpolator can be done using geoprocessing tools 
in ArcGIS for Desktop.
 Use the Create Random Points tool (Data Management toolbox) to 
generate 75 random points within the broader study area. Th is number 
is suffi  cient for use in kriging. Use the Minimum Allowed Distance 
parameter to ensure points are spread out across the study area.

Software and Data
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 Figure 5a: Ten spatially 
balanced candidate sites in 
Summit County, Ohio
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	 Generate Thiessen polygons around each of the 75 random 
points using the Create Thiessen Polygons tool (Analysis toolbox > 
Proximity toolset).
	 Spatially join and average the air pollution data to the Thiessen 
polygons using the Joins and Relates dialog box accessed from 
ArcMap’s table of contents (Figure 2a).
	 Figure 2b shows a 3D representation of the pollution data aggre-
gated to polygons. Geostatistical Analyst has a kriging model called 
areal interpolation, which has been designed specifically for data 
that has been averaged over polygons. Given the Thiessen polygons 
and the average air pollution estimates, a prediction surface is pro-
duced for all points in the study area (Figure 2c). This surface will 
serve as a smooth approximation of the industrial air contamination.

Determining Uncertainty of Existing Air Pollution 
Measurements
The US EPA maintains a database of air quality measurements taken 
throughout the United States and its territories (www.epa.gov/
airdata/index.html). Data on particulate matter (i.e., matter 2.5 mi-
crometers and smaller in diameter) was extracted for the 46 moni-
toring sites located in Ohio. These measurements serve as a proxy for 
estimating the uncertainty in the existing air pollution monitoring 
system. 
	 One goal of the sampling design is to take new samples in areas 
where the uncertainty of prediction from existing measurements is 
high. Using the values from the 46 monitoring sites in Ohio, a predic-
tion surface and standard error of prediction surface was created 
for the state using empirical Bayesian kriging. This tool was selected 
because it requires minimal interactive modeling and its standard 
errors of prediction are more accurate than standard errors of pre-
diction from other kriging models. Darker areas of Figure 3 show 
higher levels of uncertainty of air pollution prediction.

Sampling in Undisturbed Areas
Because this study is looking at cumulative deposition of pollution, it 
is important to avoid taking samples too close to roads because road 
traffic resuspends particles, creating what is known as fugitive dust. 
The US EPA recommends siting air pollution and deposition moni-
toring sites in flat, uniform, and open spaces at least 200 meters (m) 
from a lightly traveled secondary road, 500 m from a heavily traveled 
secondary road, or 2 kilometers from a major highway. 
	 However, in an urban county, such as Summit County, which has 
a dense road network, these parameters would exclude most of the 
county. As a compromise, the Euclidean distance to the nearest road 
was calculated, and the distances were rescaled using a sigmoi-
dal function shown in Figure 4a. The effect of this function is that 
locations close to a road (0–50 m) will have a very low suitability. 
Once the distance from a road reaches 50 m, suitability begins to 
gradually increase. When the distance reaches approximately 250 m, 
suitability levels off and all distances greater than this distance are 
nearly equally preferred (as shown in Figure 4b). 
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Putting It All Together
Each of the three rasters generated from this workflow represents a 
goal of the sampling design. To consider all three goals at the same 
time, the rasters must be rescaled and combined. Rescaling trans-
forms the rasters to a common measurement scale so that they will 
have equal influence in the site selection. 
	 Rasters were transformed to a 0 to 1 scale using the formula (raster 
value - minimum raster value)/(maximum raster value - raster min). 
rasters were combined using the formula (pollution raster + predic-
tion uncertainty raster) * roads raster. Multiplying by the roads layer 
(where locations close to the road have very low suitability scores) 
dramatically reduces the final suitability for locations close to a road. 
	 The combined raster is a surface where higher values represent 
more desirable locations for sampling. This final raster was also 
rescaled to a 0 to 1 scale to represent a probability range. The higher 
the value in this raster, the more likely that the cell will be included 
in the sample design. In this example, the pollution and prediction 
uncertainty rasters were considered equally important in determin-
ing site suitability, so they were simply added together. However, 
more importance could be assigned to one of the factors by multi-
plying it by a weight before adding the rasters together.
	 Figures 5a and 5b show the resultant inclusion probability raster 
and two sets of candidate sample sites. Note that each sample reali-
zation is related to the underlying spatial structure of the sampling 
suitability raster created earlier. The samples are also spatially bal-
anced. If Thiessen polygons were drawn around each sample loca-
tion, all polygons would have somewhat similar areas.

Other Applications of the Workflow
This workflow can be used for other applications such as locating 
sampling sites along a stream or road network, which is often a 
difficult task in GIS. Using the Feature To Raster tool (Conversion 
toolbox), the road or stream network can be converted to a raster, 
and locations on the stream or road can be assigned a value of 1 and 
all other locations assigned a value of 0. Using this raster as input to 
the Create Spatially Balanced Points geoprocessing tool results in a 
random sample of points along the network (Figure 6a). Alternatively, 
locations along the stream or road could be given higher inclusion 
probabilities based on proximity to features such as dams or envi-
ronmentally sensitive areas.
	 Raster-based site selection is one of the most common workflows 
in GIS. In this method, raster layers are rated, weighted, and over-
laid to create a final suitability raster. These analyses are often per-
formed at fine raster resolutions using 30 m cells to capture rapidly 
changing criteria such as elevation or land use. This can result in a 

“salt and pepper” effect on the suitability raster that contains several 
isolated cells with high suitability values (Figure 6b). 
	 To locate potential sites for three new large sporting goods stores, 
for example, individual cells of approximately 0.2 acres each (shown 
in Figure 6b) would be too small to site such large facilities. To solve 
this problem would require resampling the final suitability 
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 Figure 5b: Thirty spatially 
balanced candidate sites in 
Summit County, Ohio
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raster to a cell size appropriate for the facility being sited. Figure 
6c shows the suitability raster resampled to a 5-acre cell size. After 
rescaling this raster to a 0 to 1 scale, it can be used as input to the 
Create Spatially Balanced Points tool. Figure 6c shows potential 
sites for three stores. These sites are spatially balanced and were se-
lected based on their suitability. The Thiessen polygons around each 
of the sites can be thought of as the catchment area for each store.

Conclusion
Unequal probability-based sampling using the Create Spatially 
Balanced Points tool allows the researcher to use a priori knowledge 
of a problem to create an intelligent and efficient sampling or suit-
ability design. The tool uses continuously varying inclusion proba-
bilities that can be readily constructed using a variety of geographic 
layers and the researcher’s expert knowledge. This powerful, flexible, 
and easy-to-use tool can lead to a reduction in the cost and effort of 
sampling designs used to evaluate patterns and trends in geograph-
ic data. For more information on creating spatially balanced points, 
see the resources listed under Further Reading.

 Figure 6c: Suitability raster resampled to approximately 5-acre cell 
size. Stars represent potential store locations. Polygons represent 
store catchment areas. Darker colors indicate higher suitability.

 Figure 6a: Fifteen spatially balanced sampling locations selected 
along a sinuous river. All locations along the stream are equally 
probable. 

 Figure 6b: Suitability raster for siting a large sporting goods store. 
Notice several isolated cells, which have high suitability but are not 
large enough to site a store. Darker colors indicate higher suitability.
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