Using React with the
ArcGIS API for JavaScript

By Rene Rubalcava

The ArcGIS API for JavaScript is a powerful
library that you can use to build applications that leverage the
power of the ArcGIS platform. While you can use the ArcGIS
API for JavaScript on its own to build compelling web mapping
applications, some developers choose to integrate it with other
JavaScript libraries and frameworks, especially when building
larger web applications.

React is a popular open-source JavaScript library that is used
for building reusable Ul components for web applications. It is fast
and simple and pairs really well with the ArcGIS API for JavaScript,
which is why this implementation pattern is becoming popular
among many developers.

This article gives you a brief overview of getting started using
React with the ArcGIS API for JavaScript by examining a sample
application. You may want to also check out the Using Frameworks
topic in the online documentation for ArcGIS API for JavaScript
to learn more about working with React and other libraries and
frameworks.

Getting Started

View the source code for the application on GitHub (github.
com/odoe/jsapi-react). For this application, we are going to use
the @arcgis/webpack-plugin to help integrate the ArcGIS API for
JavaScript into our application. A best practice is to isolate the
work of the API from the Ul components that you are going to
build. This is a nice way to maintain a separation of concerns in
your development.

In this example, we are going to do the work of creating our map
in data/app.js, shown in Figure 1. Looking at this code snippet, you
can see that this is where we create our map and view, but we do
not attach our view to the page right away. We export a function
called initialize that takes an argument for the container, which is
a DOM element where our MapView will be displayed. This DOM
element will come from the React component that we will write.

The Component

For the WebMap component, we are going to take advantage of
a brand new feature in React called hooks that lets you use state
and other React features without writing a class. Hooks are still
a React proposal that is scheduled to be finalized in early 2019.
| wouldn’t recommend using them in production just yet, but |
thought it would be fun to use them for this example. There are
numerous React hooks you can use, but for our purposes, we are
only concerned with two: useEffect and useRef.

import WebMap from "esri/WebMap® ;
import MapView §rom "esri/views/MapView":
import Search §rom "esri/widgets/Search”;

const-noop-=- () -=»-{};

export const webmap: = new WebMap({
portalltem: {
id: "974cEb41665a42bfBa57dalBe5@7DLES "
|
{3 H

export const view = new MapView({
map: webmap
{3 H

export const search: = new Search({ view }):
view.ul.add(search, - "top-right”);

export-const-initialize = (contalner) =s-{
view.container - container;
view
when)
Lthen(_ =s{
console. log("Map and View are ready");
3]
.catch{noop) ;
return-() = {
view.container = null;
ki

N Figure 1: data/app.js

The useEffect hook is run after the React component is ren-
dered. This makes it perfectly suited for dynamically loading our
data/app.js module and running the initialize function we created
earlier. But how do we get the element for our component? That's
where useRef comes in.

The useRef hook creates an object that exists for as long as the
component is mounted. In our case, we want to keep track of the
DOM element that is going to be created by our React component.
We can see what this looks like in components/WebMap.js, shown
in Figure 2.

32 au Winter 2019 esri.com/arcuser

import React, [-useEffect, useRef } §rom "react”™:

export function-WebMap()-{
const elemsentRef = useRef():

useEffect(_-=»-{

import(®../data/app”™).then(

app =+ app.initiallize{elementRef.current)

1):

return-(

cdiv-className="viewDiv" ref={elementRef}>
ofdiv>

tmport-*./conflig”;

ilmport React §rom "react”;
import | render-} from "react-dom";

import - { WebMap } from "./components/WebMap® :

const - rootElement - = - document .getElementByld{"root");
render(<wWebMap />, rootElement);

Developer’s Section

R Figure 2: components/WebMap.js

¥ Figure 3: index.js

Looking at this sample, you can see that we use the useEffect
hook to lazy load the module that is responsible for handling the
mapping portion of our application. This is a useful pattern that
you can use in your applications to dynamically load the ArcGIS
API for JavaScript in your webpack applications. Now we can
render this component like any other React component in our ap-
plication in index.js, as shown in Figure 3. In your finished applica-
tion, a React component displays a WebMap, as shown in Figure 4.

Summary

We looked at how you can isolate the work of the ArcGIS API for
JavaScript in its own module in your application and then dynami-
cally load that module in your React components. We also looked
at some of the cutting-edge uses of React hooks to help you build
your React components with the API.

About the Author

Rene Rubalcava is an Esri software development engineer, blog-
ger, author, geodev, and connoisseur of programming languages
and JavaScript frameworks. Follow him on Twitter @odoenet, and
read his blog at odoe.net/blog.

V Figure 4: In your finished application, a React component displays
a WebMap.

esri.com/arcuser au

