
32 au  Winter 2019  esri.com/arcuser

The ArcGIS API for JavaScript is a powerful 
library that you can use to build applications that leverage the 
power of the ArcGIS platform. While you can use the ArcGIS 
API for JavaScript on its own to build compelling web mapping 
applications, some developers choose to integrate it with other 
JavaScript libraries and frameworks, especially when building 
larger web applications.
	 React is a popular open-source JavaScript library that is used 
for building reusable UI components for web applications. It is fast 
and simple and pairs really well with the ArcGIS API for JavaScript, 
which is why this implementation pattern is becoming popular 
among many developers.
	 This article gives you a brief overview of getting started using 
React with the ArcGIS API for JavaScript by examining a sample 
application. You may want to also check out the Using Frameworks 
topic in the online documentation for ArcGIS API for JavaScript 
to learn more about working with React and other libraries and 
frameworks.

Getting Started
View the source code for the application on GitHub (github.
com/odoe/jsapi-react). For this application, we are going to use 
the @arcgis/webpack-plugin to help integrate the ArcGIS API for 
JavaScript into our application. A best practice is to isolate the 
work of the API from the UI components that you are going to 
build. This is a nice way to maintain a separation of concerns in 
your development.
	 In this example, we are going to do the work of creating our map 
in data/app.js, shown in Figure 1. Looking at this code snippet, you 
can see that this is where we create our map and view, but we do 
not attach our view to the page right away. We export a function 
called initialize that takes an argument for the container, which is 
a DOM element where our MapView will be displayed. This DOM 
element will come from the React component that we will write.

The Component
For the WebMap component, we are going to take advantage of 
a brand new feature in React called hooks that lets you use state 
and other React features without writing a class. Hooks are still 
a React proposal that is scheduled to be finalized in early 2019. 
I wouldn’t recommend using them in production just yet, but I 
thought it would be fun to use them for this example. There are 
numerous React hooks you can use, but for our purposes, we are 
only concerned with two: useEffect and useRef. 

Using React with the 
ArcGIS API for JavaScript

By Rene Rubalcava

á Figure 1: data/app.js

	 The useEffect hook is run after the React component is ren-
dered. This makes it perfectly suited for dynamically loading our 
data/app.js module and running the initialize function we created 
earlier. But how do we get the element for our component? That’s 
where useRef comes in.
	 The useRef hook creates an object that exists for as long as the 
component is mounted. In our case, we want to keep track of the 
DOM element that is going to be created by our React component. 
We can see what this looks like in components/WebMap.js, shown 
in Figure 2.



33esri.com/arcuser  Winter 2019  au

Developer’s Section

	 Looking at this sample, you can see that we use the useEffect 
hook to lazy load the module that is responsible for handling the 
mapping portion of our application. This is a useful pattern that 
you can use in your applications to dynamically load the ArcGIS 
API for JavaScript in your webpack applications. Now we can 
render this component like any other React component in our ap-
plication in index.js, as shown in Figure 3. In your finished applica-
tion, a React component displays a WebMap, as shown in Figure 4.

Summary
We looked at how you can isolate the work of the ArcGIS API for 
JavaScript in its own module in your application and then dynami-
cally load that module in your React components. We also looked 
at some of the cutting-edge uses of React hooks to help you build 
your React components with the API.

About the Author
Rene Rubalcava is an Esri software development engineer, blog-
ger, author, geodev, and connoisseur of programming languages 
and JavaScript frameworks. Follow him on Twitter @odoenet, and 
read his blog at odoe.net/blog.

 Figure 2: components/WebMap.js

 Figure 3: index.js

 Figure 4: In your finished application, a React component displays 
a WebMap.




