By Kristian Ekenes

Visualizing large spatial datasets on the
web has always been a challenge. Over the
last couple of years, Esri has made substan-
tial improvements in its software that allow
you to visualize and interact with larger
amounts of data efficiently in the browser.
A web map containing more than
550,000 polyline features that
sent water distribution pipes in Bangkok,

repre-

Thailand, will illustrate the effects of these
enhancements on performance when using
modern web technology available in the
ArcGIS API for JavaScript, ArcGIS Online,
and ArcGIS Enterprise to render all this
data in a single view.

More Data Is More Challenging
Effectively rendering large datasets in web
apps, such as the water distribution pipes
in the example, presents several interre-
lated challenges. Large payloads in query
responses (lots of data) mean more storage
space and more data needs that are deliv-
ered for each query.

Larger payloads lead to longer wait
times from server queries. When the client
requests a heavier load from the server,
you should generally expect it to take a
little longer to be delivered to the client.

Larger payloads also lead to longer draw-
ing times. When the browser downloads a
large amount of data, the drawing engine
used to render the data has more vertices
to draw. It will take more time to draw the

- The web map, containing more than
550,000 polyline features representing water
distribution pipes, will be used to illustrate
performance enhancements in recent
releases of the ArcGIS API for JavaScript,
ArcGIS Online, and ArcGIS Enterprise.

lines. The effects of these challenges can
snowball, creating a slow app and a bad
user experience.

Minimize Payload Size for

Faster Apps

If the size of the dataset is the root of the
problem, then the solution lies in decreas-
ing the size of each query’s payload. Use
the following methods to minimize the size
of the dataset. A query of a 6.5 MB data-
set with 10,000 lines with time to fetch of

~11 seconds is used as a baseline for meas-

uring performance improvement as each
method is applied.

Compression

Queries to ArcGIS Online hosted feature
services (not ArcGIS Enterprise services)
are compressed using Brotli compression
[a generic-purpose, lossless compression
algorithm] that significantly reduces pay-
load size. The query response payload
for the 10,000 lines previously mentioned,

32 au Winter 2020 esri.com/arcuser

Private Layer

~» “ CDN |
i s'.:';";"‘ il : f
)
/
|
|'lll
"-_ Fia '(:
e e 4
Featur
e il] o
— |1 1N —
; e
.': l"'-
1
.-'III
. T _/"
;. =

M Figure 1: Feature tiles cached in tiers

including all geometries and attributes, de-
creases by 65 percent when compression is
used.

Quantization
Highly detailed geometries can substan-
tially increase payload size. Higher preci-
sion geometries (i.e., more vertices and/or
more floating-point precision in the coordi-
nates) require heavier lifting by the server.
Quantization is the process of thinning
vertices based on a given tolerance in map
units. Typically, the tolerance equals the
resolution of the view (i.e., the length of
one screen pixel in map units). This ensures
coincident vertices that fall within the same
pixel will be reduced to one vertex. If the
size of an entire feature at a small scale (i.e.,
zoomed out) is smaller than the size of one

pixel, then that feature will be dropped and
won't render. Feature tile queries execute
with a quantization tolerance equal to the
resolution of the current scale, ensuring the
layer is drawn in the most efficient way for
the given view scale.

When the data is served by ArcGIS Online
and ArcGIS Enterprise as hosted services
or from your own database with ArcGIS
Enterprise, even datasets that span large ex-
tents can be as precise as you want, thanks
to quantization. After the client queries
geometries from the database, the coordi-
nates are quantized to reduce payload size.

Quantized coordinates for a polyline
path are delivered in screen coordinates so
that the first vertex represents the position
relative to the tile origin. Each subsequent
coordinate in the path represents the

Developer's Section

position relative to the previous coordinate
(e.g., [345, 894], [+1, O], [-1, -11, [0, 1]). This
format is much smaller than raw coordi-
nates and compresses well, which reduces
the payload for each query, thus increasing
the speed of the application.

For the baseline uncompressed payload
size of 6.5 MB for 10,000 features, quanti-
zation, when added to Brotli compression,
reduces the payload size by 85 percent.

Remove Unnecessary Attributes

Requesting data attributes that aren't
required for rendering is one of the most
common causes of unnecessarily large
payload sizes. Often only one field is re-
quired for rendering. The polyline layer in
the example contains 32 fields. By restrict-
ing the query to the one field needed for
rendering, payload size is decreased from
6.5MB to 52.6 KB. In conjunction with Brotli
compression and quantization, limiting the
request to one attribute reduces the pay-
load size by 99.2 percent.

By default, the ArcGIS API for JavaScript
requests only the attributes required for
rendering. If other attributes are required,
the appropriate requests are made to
include those attributes. For highly in-
teractive apps, it may be more beneficial
to request all fields intended for use in
the app up front so the user can explore
the data without waiting for additional
requests.

PBF

The ArcGIS API for JavaScript also requests
data in protocol binary format (PBF) by
default. Vertex encoding improves when
data is requested in PBF, which leads to
faster drawing times because less triangu-
lation on the GPU is required. PBF reduces
the payload size for the baseline query
of 10,000 features by an additional 12 KB
to 40.8 KB. The application of Brotli com-
pression and quantization combined with
limiting the request to one attribute and
requesting data in PBF format reduces the
payload size by 99.4 percent.

Caching: Reducing Client and
Server Load

Even afterimplementing all these methods,
the first query for the data may still take

esri.com/arcuser Winter 2020 au 33

several seconds before a response comes
back. The actual download time is pretty
fast, so most of the time is spent waiting on
a response from the server. That's because
a lot of data needs to be queried directly
from a database.

When you publish a large dataset to the
ArcGIS Online cloud as a hosted feature
service, you immediately benefit from a
system involving tile queries and several
tiers of response caching that speeds up
performance and reduces load on the
client and server that occurs after the first
query. Executing the same query for 10,000
features a second time shaves the re-
sponse time down dramatically to between
100 and 200 milliseconds. Table 1 summa-
rizes the cumulative reduction in payload
size as each of the methods discussed is
applied.

Feature Tile Caching

To avoid a few large requests, features are
requested in tiles. This splits the query up
into several smaller spatial queries. Tile
requests have the benefit of being consist-
ent across different users and apps. This
consistency allows query responses to be
cached in your browser and once on the
server so they are shared among all users.
This frees up the resources on both the
server and the underlying database, al-
lowing feature layers to scale to millions
of users and clients without the need to
explicitly generate tiles ahead of time.
(However, ArcGIS Online does support
generating tiles when needed.)

Feature tiles are cached in tiers, shown
by the diagram on page 33. A feature tile
cache can be persisted on the browser,
server, or content delivery network (CDN).

If a cache is requested using a client re-
quest, the underlying database doesn’t
need to be queried.

Cached responses from the server are
automatically invalidated as the data is
edited. This ensures that clients using the
layer always get the latest information.

CDN Caching

CDNs are the backbone of a speedy in-
ternet. A CDN is composed of many serv-
ers within a network that copy or mirror
content and deliver it to clients based on
geographic location. For example, con-
tent published to the CDN from Japan can
be quickly downloaded in Brazil if a CDN
server on the same network is located in
Brazil.

For publicly shared, hosted feature
services, CDN caches query responses
so everyone (not just you) using the same
layer benefits from a smaller payload. The
CDN is distributed all over the world and
mirrors the cache. That means even if the
servers hosting the data are located half-
way around the world, the cache is most
likely much closer to you, making it faster
to download.

This is extremely powerful. While it may
have taken my original query about 10 sec-
onds to complete, anyone else executing
the same query from the same service will
get a cached response based on my origi-
nal query in just a few milliseconds.

Server-Side Caching: Shared
and Stored in ArcGIS Online

To protect the privacy of nonpublic ser-
vices, layers shared only with users in your
organization do not make use of the CDN
response cache.

However, the internal infrastructure of
ArcGIS Online also provides server-side
caching so that other users in your or-
ganization can reuse the cache when the
browser cache and the CDN can't be used.
As a result, queries come back quickly, put
less load on the underlying databases, and
keep everything running smoothly at scale
even under heavy load. (Future versions of
ArcGIS Enterprise will have similar server-
side capabilities available.)

Cache Control

You can further improve the performance
of data loading by increasing the length of
time the current cache is considered valid.
The maximum amount of time you can set
is one hour before updates are seen. This
comes at the cost of users not immediately
seeing updates to the data until the refresh
interval kicks in.

Optimize for Scale

ArcGIS Online offers the option to selec-
tively optimize different layers that con-
tain complex polylines and polygons. This
saves several versions of each feature's ge-
ometries at various levels of resolution, so
the initial query for those features is faster.
This benefitis most clearly seen in the initial
query. Because of the caching described
above, you may not see much of a perfor-
mance difference after you load the data
for the first time.

Since the example polyline dataset
contains many vertices that will be viewed
at small-to-medium scale, choosing this
option will increase performance at those
scales and maintain performance at larger
scales but will come at the cost of increased
storage space on the server.

V¥ Table 1: Comparison of the cumulative effect of performance improvements applied to a baseline test dataset of 6.5 MB and

10,000 features.
Performance Enhancements Added Payload Size Percent Reduction in Payload
+ Brotli compression 2.3MB 65
+ Quantization of coordinates 1.0 MB 85
+ Request only required fields 53 KB 99.2
+ PBF 40 KB 99.4
+ Feature tile cache 40 KB 99.4

34 au Winter 2020 esri.com/arcuser

You can optimize layers for drawing
by checking the Optimize layer drawing
option on the settings tab of the layer's
item details page of ArcGIS Online.

Conclusion

You can visualize a lot of features on the
web in a performant, interactive way.
Although the ArcGIS API for JavaScript,
ArcGIS Online, and ArcGIS Enterprise
don't specify specific limits on the number
of features you can display and analyze

at one time, there are limitations. See the
accompanying article “Visualization Best
Practices” for some tips to improve the
effectiveness of your web map while main-
taining responsiveness.

Ultimately, the data size and feature
limit for layers depends on factors includ-
ing network bandwidth, your hardware
(e.g., mobile devices won't allow you to
download as many features as a desktop
browser), and how much the browser can
handle.

Developer's Section

This article highlighted some of the ways
the ArcGIS Online, ArcGIS Enterprise, and
the web API teams at Esri improved per-
formance over the last few releases. These
teams are continually working to improve
these products for future releases.

Paul Barker contributed to this article.

About the Author

Kristian Ekenes is a product engineer on
the ArcGIS API for JavaScript team.

Just because you can visualize hundreds of thousands of features
in a single view doesn’t mean you should. You should always
design your visualization in a way that communicates a meaningful
message. Here are some things you can do when visualizing large
datasets at small scales that will optimize performance and im-
prove understanding. These tips reference a web map containing
more than 550,000 polyline features that represent water distribu-
tion pipes in Bangkok, Thailand, that is shown on page 32.

The Bangkok pipelines layer is detailed and dense. While you can
view all data at the full extent of the layer, the data is more appro-
priately viewed at larger scales (i.e., zoomed in closer). A maximum
scale of zero may be appropriate so the features are always view-
able as you zoom in, but setting a minimum scale so that you can't
view the data as you zoom out to view several neighborhoods at

once may be more appropriate than viewing it at a citywide scale.

While quantization provides a certain measure of thinning out of
the box, you can more aggressively thin your data using filters.

For example, instead of turning layer visibility off at a citywide
scale, you can display only large pipes at that scale and include
the smaller pipes as you zoom in. Views of moderately thinned and
aggressively thinned layers will appear almost identical because
most of the small lines in the full dataset can't be seen.

ArcGIS Online and ArcGIS Enterprise allow you to cluster point
data. When points become very dense, you can no longer make
sense of your map. Clustering will reduce the number of visible
features in the view by summarizing them as cluster graphics.
Binning similarly summarizes point data as polygon bins instead
of icons. Keep in mind that client-side clustering and binning still
require that all features be downloaded to the client before ag-
gregation takes place. Server-side clustering and binning are avail-
able with ArcGIS Enterprise for enterprise geodatabase-backed
services. These capabilities will be available in ArcGIS Online soon.
ArcGIS Online and ArcGIS Enterprise also provide aggregation
analysis tools that create new layers for feature reduction and data sum-
marization. Aggregation tools are intended for improving understand-
ing, because displaying everything isn't always the best thing to do.

One strategy for handling
visualization of data that is
detailed and dense is to use
scale-dependent visualization
(left). A heat map is ideal for
visualizing large, dense point
datasets at small scales (right).
Setting a scale threshold lets
the layer's renderer switch to
discrete marker symbols that
are more useful when conveying
information at large scales.

esri.com Winter 2020 au 35

