ArcGIS Blog

Data Management

Predict Seagrass Habitats with Machine Learning

By John Berry

A new lesson from Learn ArcGIS allows you to identify locations worldwide for encouraging seagrass growth — all based on a data from your small region off Florida.

In Predict Seagrass Habitats with Machine Learning, you will assume the role of a marine ecologist who wants to find suitable habitats for seagrass growth. Because seagrasses tend to grow in similar conditions, regardless of temperatures, your Florida data sample can be applied to the entire globe because of the predictive powers of machine learning taught in this lesson.

First, you’ll create a training dataset with all the ocean variables that influence seagrass growth. You’ll put the variables into Python and use a random forest prediction model to determine which ocean area support seagrass growth. You’ll conclude by importing your predictions into ArcGIS Pro to locate areas where seagrass could grow.

Share this article

Subscribe
Notify of
0 Comments
Oldest
Newest
Inline Feedbacks
View all comments