

Using Machine Learning and Deep learning with Imagery in ArcGIS

Ling Tang and Sangeet Mathew

Artificial Intelligence

Object Tracking

Gradient Descent

CNTK

Natural
Language

Processing

Computer Vision

TensorFlow

PyTorch

Neural networks

Object Detection

Keras

Caffe

Machine

learning

Random Forest

Cognitive Computing

Scikit-learn

Deep Learning

ArcGIS Includes Machine Learning Tools

Prediction

Deep Learning

Deep Learning: Computer Vision Use Cases

Image Classification

Object Detection

Semantic Segmentation

Instance Segmentation

Deep Learning in ArcGIS

Object Detection

Image Classification

ArcGIS Enterprise and ArcGIS Pro Deep Learning Integration Workflow

Performs Labelling or Collects
 Training Samples

 Export Samples to Training Data

Using ArcGIS Pro or ArcGIS Server

0 8

Runs **Deep Learning Inference Tools**

ArcGIS User

Using ArcGIS Pro or ArcGIS Server

Collect Samples Export Training Chips

Train

Perform Inference

ArcGIS Deep Learning Workflow

Support for Deep Learning Frameworks out of the box

	Detect Objects	Classify Pixels
TensorFlow	Object Detection API	DeepLabs
Keras	Mask RCNN	
PyTorch	fast.ai - SSD	
CNTK	Faster RCNN by Microsoft	U-Net by Microsoft Azure

4

Data Labeling: Training Samples Manager

- Add Labels
- Quickly Collect Samples
- Save Samples to a Feature Class

- Exports Samples to Training
- Each Image has Labels
- Performs Data Augmentation

```
"Framework": "e.g. CNTK",
"ModelConfiguration": "some description",
"ModelType": "e.g. ObjectDetection or ImageClassification",
"ModelFile": "e.g..\\trained.model",
"ImageHeight": "e.g. 256",
"ImageWidth": "e.g. 256",
"ExtractBands": "e.g. [0, 1, 2]",
"DataRange": "e.g. [0.1, 1.0] (optional)",
"ModelPadding": "e.g. 64 (optional)",
"BatchSize": "e.g. 8 (optional)",
"PerProcessGPUMemoryFraction": "e.g. 0.8 (optional)",
"Classes" : [
  "Value": 10.
  "Name": "10",
  "Color" : [
   214,
    174,
   82
```

Collect Samples Export Training Samples

Train Perform Inference

Esri Model Definition File

- Trained Model file
- Deep Learning Package

```
"Framework": "Keras",
"ModelConfiguration": {
  "Name": "MaskRCNN",
  "Architecture": ".\\mrcnn\\Buildingfootprints",
  "Config":".\\mrcnn\\Buildingfootprints"
"InferenceFunction": ".\\DeepLearning\\ObjectDetector.py",
"ModelFile_HouseFootprints":".\\mask_rcnn_community_maps_0242.h5",
"ModelFile_Damage":".\\Damage_Classification_Model_V3.h5",
"ModelType": "ObjectDetection",
"ImageHeight":320,
"ImageWidth":320,
"ExtractBands":[0,1,2],
"Classes" : [
   "Value": 1,
   Name": "building",
     olor": [0, 55, 0]
```

Collect Samples Export Training Samples

Train Perform Inference

ArcGIS Deep Learning Workflow

Consume Deep Learning Models

Inference Tools

Classify Pixels Using Deep Learning &

Runs the model on an input raster to product a classified raster, each valid pixel has an assigned class label.

- Built-in Python Raster Function for TensorFlow and CNTK
- Mini-batch support
- Processor type: CPU or GPU
- Parallel processing in ArcGIS Pro
- Distributed raster analysis on Enterprise

- ArcGIS Image Analyst in Pro
- ArcGIS Image Server on Enterprise

Sclassify Pixels Using Deep Learning - Sample Use Case

Landcover Classification

Inference Tools

Object Detection Using Deep Learning 🔬

Runs the model on an input raster to produce a feature class containing the objects it finds.

- Built-in Python Raster Function for TensorFlow, Keras,
 PyTorch and CNTK
- Mini-batch support
- Optional <u>Non Maximum Suppression</u>
- Processor type: CPU or GPU
- Parallel processing in Pro
- Distributed raster analysis on Enterprise

- ArcGIS Image Analyst in Pro
- ArcGIS Image Server on Enterprise

Sample Use Cases Object Detection Using Deep Learning – Sample Use Cases

Palm Tree Detection and Health Assessment

ArcGIS Learn Lesson – Use Deep Learning to Assess Palm Tree Health https://learn.arcgis.com/en/projects/use-deep-learning-to-assess-palm-tree-health/lessons/detect-palm-treeswith-a-deep-learning-model.htm

Sobject Detection Using Deep Learning - Sample Use Cases

Building Footprints Detection and Post Hurricane Damage Assessment

Inference Tools

Auxiliary

Non Maximum Suppression 義

Removes duplicate features from the output of the <u>Detect Objects Using Deep Learning</u> tool

- ArcGIS Image Analyst in Pro
- ArcGIS Image Server on Enterprise

Extend Deep Learning Capability in ArcGIS

Python Raster Function

- Python code understandable by ArcGIS Deep Learning inference tools
- Class template containing pre-defined methods
- Built-in <u>Python Raster Function</u> support for well-known deep learning model configurations
- Custom Python Raster Function support for other thirdparty model configurations

Resources:

Deep Learning Python Raster Function GitHub Repo: https://github.com/Esri/raster-deep-learning

Python Raster Function Wiki: https://github.com/Esri/raster-functions/wiki/PythonRasterFunction

Built-in support

EMD file using custom Python Raster Function

Enterprise Deep Learning User Experience

Run large inferencing tasks using distributed raster analysis

Deep Learning in ArcGIS API for Python

Make model training easier using arcgis.learn module

arcgis.learn.export_training_data

Prepare Training Data

arcgis.learn.prepare_data

Train Models

arcgis.learn.SingleShotDetector arcgis.learn.UnetClassifier arcgis.learn.FeatureClassifier

Model Management

arcgis.learn.list_models arcgis.learn.Model Model.install Model.uninstall Model.query_info

Run Inference at SCALE

arcgis.learn.detect_objects arcgis.learn.classify_pixels

Current Release: 1.6.2 More to come

Disaster Assessment

Case Study

Disaster Assessment

Rebuilding after destructive events such as <u>Hurricane Michael</u> is difficult and requires informed planning.

Use deep learning to identify damaged housing quickly after the event, then use data enrichment to understand the estimated cost of damage as well as the impacted population to make informed decisions about the rebuild process.

Disaster Assessment

Sangeet Mathew

Demo – Scalable Inference on ArcGIS Enterprise

Landcover classification

Ling Tang

Oil Well Pads Change Detection

Case Study

Oil Well Pads Change detection

Oil and gas companies need a convenient way to frequently monitor the drilling activities that have been occurring at very large scale (e.g., basin level) in a timely manner

Integrated deep learning workflow in ArcGIS allows to easily train the well pads detection model and perform scalable inferencing tasks on vast area

ArcGIS Deep Learning Workflow

End-to-end from raw imagery to structured information products

ArcGIS in use for each step of the deep learning workflow

Run Model Inference at Scale Using Raster Analytics

Benchmark Test

Enterprise version: 10.7.1 Image Server nodes: 4

Instances: AWS p2.xlarge GPU: NVIDIA K80 (12GB)

No. of detected well pads: 51,042

Time used: 6 minutes 56 seconds

Demo – ArcGIS API for Python arcgis.learn

Oil well pads detection

Ling Tang

4

Take Away

- Have an easy way to extend the Deep Learning capabilities to any support Framework/Model Configuration.
- Out of the box Support for most common Deep Learning Frameworks
- Leverage the powerful Raster Analytics capabilities to distribute model inference tasks.
- You can easily train the model using ArcGIS API for Python.

Coming Soon...

- An end to end solution in ArcGIS Pro (Training included)
- Enhanced Training Methods
- A new Inference Tool for Image/Object Classification
- New tools to improve the User Experience for Deep Learning Workflows in ArcGIS

Related Sessions

ArcGIS API for Python: Integrating ML & DL Tues 1:15–2:00pm Demo Theater 8

Demo Theater 8

ArcGIS Pro:
Using Imagery & Deep Learning
Thurs 12:15–1:00 pm
Demo Theater 2

Demo Theater 2

ArcGIS Pro: Intro the Image Analyst Wed 1:15–2:00pm Ballroom 06D

Ballroom 06D

ArcGIS Enterprise:
Deploying Distributed
Raster Analytics
Thurs 8:30-9:30am
ROOM 05A

ArcGIS Enterprise:
Raster Analytics in
ArcGIS Image Server
Thurs 2:30–3:30pm
ROOM 08

ROOM 08

Please Share Your Feedback in the App

Download the Esri Events app and find your event

Select the session you attended

Scroll down to "Survey"

Log in to access the survey

Complete the survey and select "Submit"

