

The Forest for the Trees: Making Predictions using Forest-Based Classification and Regression

Lauren Bennett

Alberto Nieto

Flora Vale

esriurl.com/spatialstats

SEE WHAT OTHERS CAN'T

Models

Representative generalizations used for prediction

Why model

Use information we have to predict information we don't have

Which areas are most contaminated?

What drives sales?

Which buildings will fail inspection?

What will the weather be like tomorrow?

When we can't trust a model

Mimics training dataset and models noise instead of generalizing a trend

Many many many ways to model

Generalized Linear Regression Geographically Weighted Regression

Forest-based Classification and Regression

Forest-based Classification & Regression

Predicting using machine learning

Training

variable to predict

Breed

Size
Color
Fur
Ears
Tail
Age
Weight

explanatory variables

Decision Tree Size Color Ears

Random subset of data and variables used in each tree

Majority vote wins

Classification

Predict categorical variable

Regression

Predict continuous variable

Explanatory Variables

Attributes

Distance features

Rasters

Explanatory Training Variables

Other attributes in the layer containing the Variable to Predict

Explanatory TrainingDistance Features

Features from which distances will be calculated

Explanatory TrainingRasters

Rasters from which values will be extracted

Prediction Type

Train only 🕸 🔓

Predict to features

Predict to rasters

Train only & L

Assess model performance

How accurate is the model?

Which variables were most important for prediction?

Predict to features

Create a prediction feature class

Predict missing values in study area

Predict values in a different study area

Predict values in a different time period

Predict to raster

Create a prediction surface

All explanatory variables must be rasters

Predict values in a different study area

Predict values in a different time period

Evaluate model performance

Variable importance

How well does each variable do in splitting the trees?

Out Of Bag errors

How well can each tree predict the excluded features?

2/3 included (randomly)

1/3 excluded

Model Validation

Training features

Model Validation

Model Validation

How well can the forest predict the features not used in training?

R-squared

How well can the forest predict (regression) the features not used in training?

Confusion matrix

How well can the forest predict (classification) the features not used in training?

Confusion matrix

How well can the forest predict (classification) the features not used in training?

Modeling workflow

- Step 0. Prepare your data
- Step 1. Train a model
- Step 2. Evaluate model performance
- Step 3. Train again with different parameters
- Step 4. Compare models
- Step 5. Repeat... OO
- Step 6. Use best model to predict unknown values

Demo

"Essentially, all models are wrong, but some are useful."

- George E. P. Box

esriurl.com/spatialstats