

Collector for ArcGIS: Working with High Accuracy Data

Kevin Burke

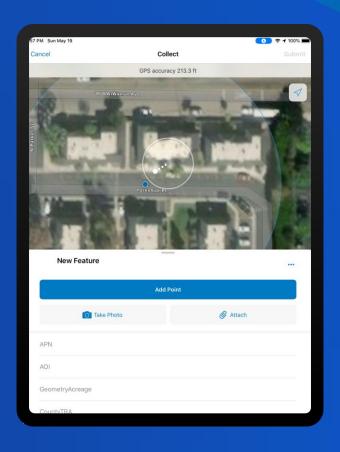
Colin Lawrence

Agenda

- Introduction
- Getting started
- Collector setup for high accuracy data collection
- Field data collection process
- Using offsets to capture features
- Additional Tools
- Q&A

Collector for ArcGIS

Accurate data collection made easy

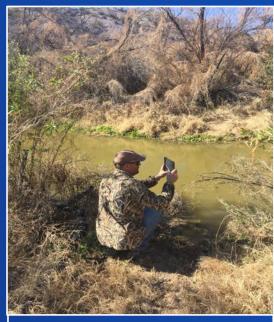

Efficient data collection

Works anywhere, anytime

High accuracy location capture

Capture

Perform data collection and send it back to the office from anywhere



Collector | How is it being used?

Collect and Maintain Asset Data

Capture Observations

Perform Field Assessments

Collector | High Accuracy GPS

- Easy to use
- Efficient with processing on the fly
- Confident with GPS metadata fields for individual asset

Seattle Zoo Infrastructure Mapping

City of Centennial and CH2M Public Works Asset Collections

Project RockTheAlps (RTA) Rockfall location collections

Collector for ArcGIS | Control Points Use Cases (Drones)

Collector + RTK

Drones...

What's new in Collector for ArcGIS

- Configure RTK settings directly within Collector for Trimble receivers (iOS only)
- Support for grid based transformations in the Location Profile
 - Includes sideloading grid files onto the device directly or downloading the grid files from ArcGIS
 Online
- Enhanced support for capturing elevations
 - Z values stored with the feature geometry
 - Capture orthometric heights with Eos Tools Pro app
 - Visualize current GPS altitude inside the GPS details
- Improved UI for high accuracy workflows
 - Improved user feedback when capturing outside required accuracy
 - Visualize point cloud in the map during averaging workflow

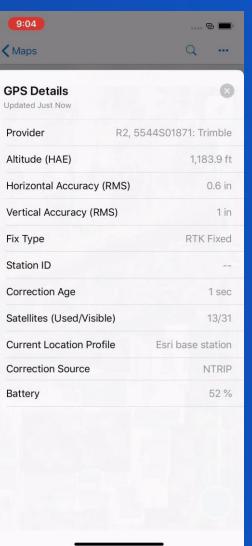
Getting Started

Considerations for high accuracy data collection

Data Collection Considerations

- Project accuracy requirements
- Supported receivers
- Correction services
- GNSS Metadata
- Desired basemap for collection
- Datum transformations

Collector for ArcGIS| Lots of Receivers


when it has to be right

Collector | Using Real-time Differential Corrections

- Improve accuracy from receiver
- Requires a subscription and connection*
- Optionally use 3rd party app to configure
- Need to understand your map's projection and apply a location profile accordingly

4

Collector | Using GNSS Metadata

- Stores the raw GNSS measurements from the GPS receiver.
- Useful for performing further data analysis and for performing QA/QC on the field measurements
- Store up to 18 fields of GNSS metadata information (point features only)
- Only applies to points created using your GPS location
- 4 of the 18 fields only apply when using Averaging to capture point features
- The fields can be created several ways:
 Record metadata fields

- Receiver Name
- Latitude
- Longitude
- Altitude (Height Above Ellipsoid)
- Fix time
- Horizontal Accuracy
- Vertical Accuracy
- PDOP
- HDOP
- VDOP
- Fix Type
- Correction Age
- Station ID
- Number of Satellites
- Average Horizontal Accuracy*
- Average Vertical Accuracy*
- Number of positions averaged*
- Standard Deviation*

*Only when using Averaging

Datum Transformations

Minimize when possible to maintain accuracy

DT1 – Defined in location profile

DT2 – Determined by basemap

DT3 – Determined by storage coordinate system

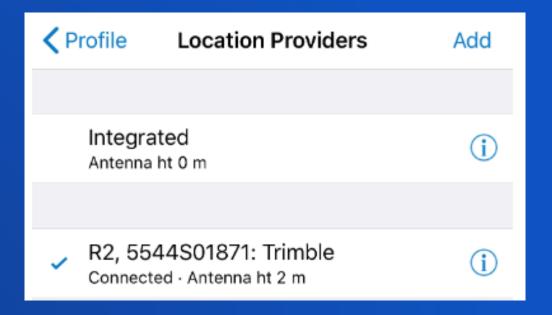
Geographic Transformation Table

4

Datum Transformations

Spatial Reference Choice for Web Layer

- Null datum transformation for DT2
 - Web Layer same as basemap

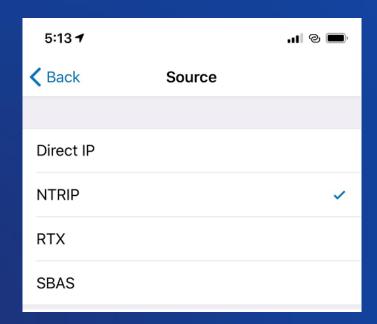

- Set datum transformation for DT2
 - Set DT2 during publishing web layer

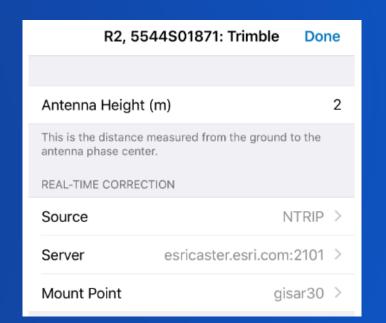
Demo-Collector Setup

New High Accuracy Capabilities

Collector | Location Provider

- Located in App Settings
- Support for
 - Integrated receivers
 - Bluetooth receivers
 - Serial receivers on Windows
- Connect to named receiver
- Specify antenna height




iOS White Listed Providers:

- Trimble R1/R2
- Eos Positioning
- Geneq iSxBlue
- CHC
- Bad-Elf
- Aman NMEA-BT Adapter
- DualGPS
- Garmin GLO
- Leica GG04 Plus*

Collector | Location Provider

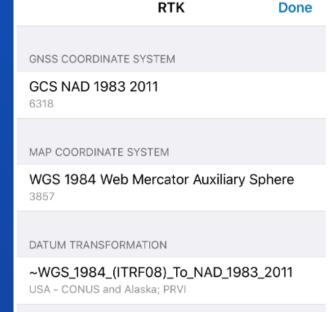
- Configure RTK corrections for <u>Trimble</u> receivers directly in Collector (iOS ONLY)
- Accessible through the location provider details

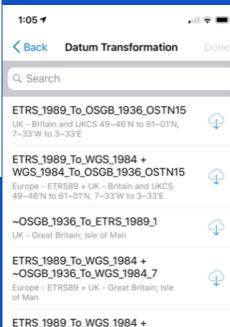
Collector | Location Profile

- Define the transformation used from receiver to map
 - Integrated location sensor or external GNSS receiver

Input: Coordinate System used by GNSS receiver correction service

Always GCS (example: NAD_1983_2011)


Output: Coordinate System used by Web Map's BaseMap


- GCS or PCS

Method: Datum transformation selection

- Choices by map extent
- Grid-based transformations are supported (Custom transformations not supported)

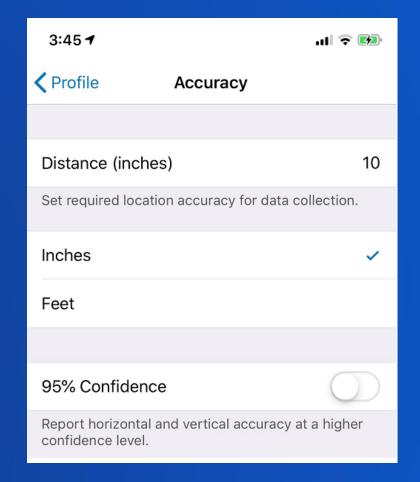
Name: Provide a memorable name for the profile

~OSGB_1936_To_WGS_1984_Petroleum

Europe - ETRS89 + UK - Great Britain; Isle of Man

Europe - ETRS89 + UK - Great Britain; Isle of Man

~OSGB_1936_To_WGS_1984_NGA_7PAR Europe - ETRS89 + UK - Great Britain; Isle of Man


ETRS_1989_To_WGS_1984 + ~OSGB_1936_To_WGS_1984_1

ETRS 1989 To WGS 1984 +

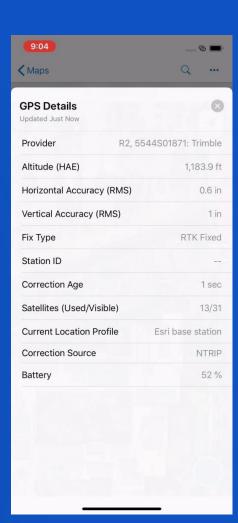
ETRS_1989_To_WGS_1984 + ~OSGB_1936_To_WGS_1984_2 Europe - ETRS89 + UK - England

Collector | Location Accuracy and 95% CI

- User-defined accuracy value
 - Match project accuracy requirements
- Specify in imperial or metric units
 - Based on measurement units
- 95% Confidence Interval
 - Required for some organizations
 - Horizontal and vertical accuracies are reported at higher confidence interval
 - Default accuracy reporting uses RMS, which is around 68% confidence interval

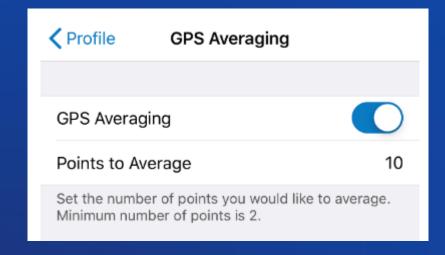
Field Data Collection

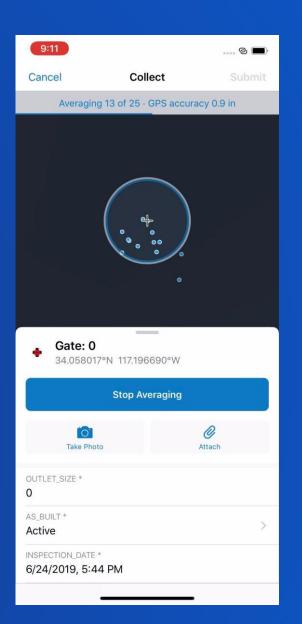
New High Accuracy Capabilities and Use Cases



+

Demo Recap


- GPS Details
 - Useful for troubleshooting
- Basemap overzoom
 - Zoom in beyond minimum scale range (resampled)
- GPS Metadata fields
 - Auto-populate accuracy information to point features
 - Based on well-known fields added to your Feature Layer (points only)




4

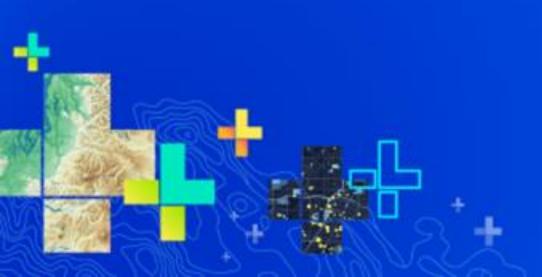
Collector | Averaging

Collector | Incorrect Location Profile

Capture Features Using Offsets

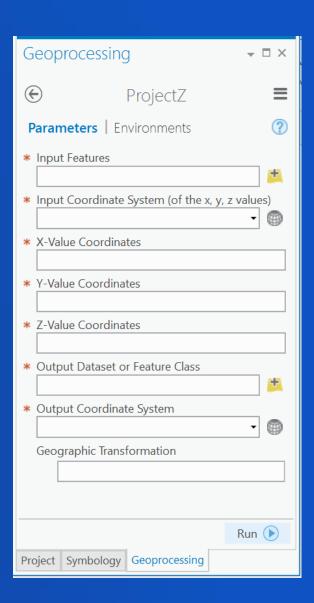
Offsets – getting started

- Hardware
 - Eos GNSS receiver
 - Laser rangefinder
 - TruPulse 200x
 - Angle encoder (optional)
 - Tripod, bipod, or range pole (recommended)
- Software
 - Collector for ArcGIS (iOS)
 - Eos Tools Pro
- Three Methods
 - Method 1 Standard Laser Offset
 - Method 2 Range-Backsight Offset
 - Method 3 Range-Range Offset



Offset Method 2: Range-Backsight Offset

- Equipment
 - GNSS receiver
 - Laser range finder
 - Angle Encoder
- Steps
 - 1. Capture GNSS backsight point
 - 2. Capture GNSS control point
 - 3. From control point fire at backsight point
 - 4. Fire the target


Demo - Collect locations using GPS offsets

Additional Tools

Collector | ProjectZ Geoprocessing Tool

- Custom geoprocessing tool for ArcGIS Pro
- Built on top of existing Project tool
- Converts Latitude/Longitude/Altitude metadata values to a new zenabled feature class
- Supports vertical datum transformations to obtain orthometric heights
- Requires the ArcGIS Coordinate Systems Data for ArcGIS Pro
- Maintains existing attachments for output feature class
- Download ArcGIS Pro toolbox from public <u>GitHub</u> repo

Other Resources

Technical workshops

- Coordinate Systems in ArcGIS 7/11
- Deep Dive into Transformations 7/11
- Integrating Laser Measurement Solutions with ArcGIS Mobile Apps 7/11

Other resources

- Lining Up Data in ArcGIS: A Guide to Map Projections, Second Edition

