

GeoAl: Vertical Use Cases using Al with ArcGIS

Omar Maher - Director, Artificial Intelligence

Joel McCune – Solution Engineer, Artificial Intelligence

Al is used today literally everywhere..

Autonomous

Crime

Prediction

Stock Market Prediction

Sentiment Analysis

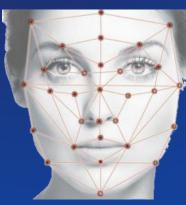
Predictive Maintenance

Personalized Marketing

Chatbots

Cancer Detection

Facial Recognition



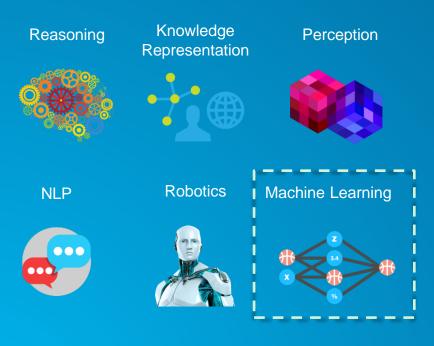
Advanced Video Analytics

Robots

Advanced Satellite Intelligence

1. AI > ML > DL

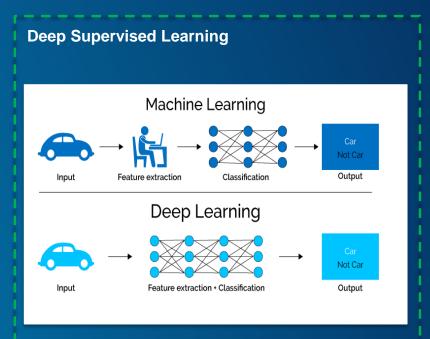
Artificial Intelligence

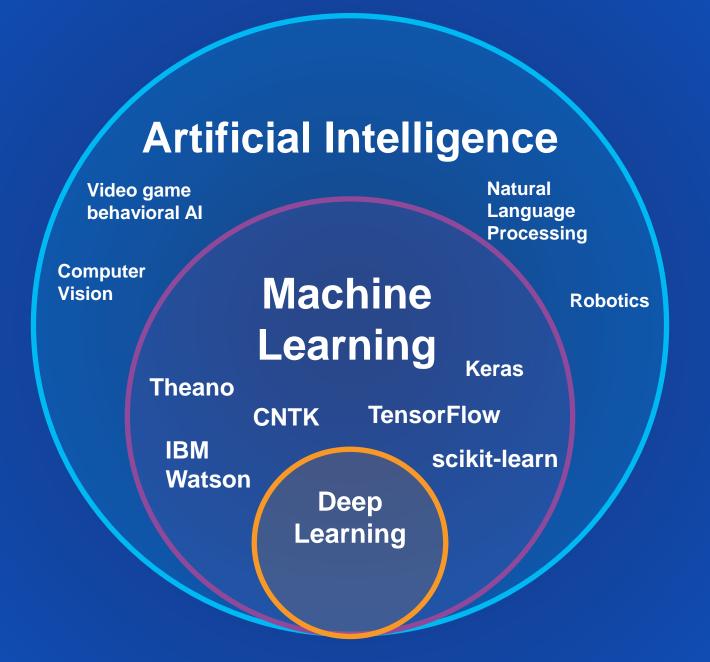


Machine Learning



Deep Learning





How can ArcGIS AI Capabilities Help you today?

Object Detection

Detecting Objects from Imagery/Videos, Land Cover, Change Detection..

Buildings, Road Segments, Swimming Pools, Blight, Graffiti, Overgrowth, Road Signs, Vehicles from CCTVs, and more

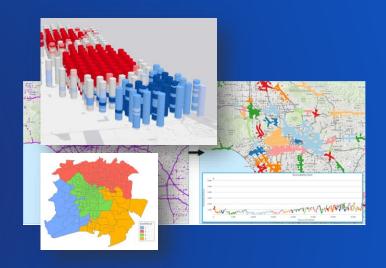
Prediction



Predicting Geospatial Events/Phenomena

Water Pipe Breaks, Asthma Rates, Diseases, Crimes, Crashes, Incidents, Fires, Congestion, 911 Calls,

Pattern Detection



Finding Statistically Significant Clusters & Patterns

Top Risky Segments, Emerging Hotspots of 911 Calls, Disease Clusters, and more

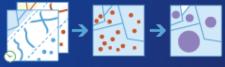
Machine Learning Tools in ArcGIS

Classification

- Maximum Likelihood Classification
- Random Trees
- Support Vector Machine

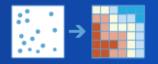
Clustering

- Spatially Constrained **Multivariate Clustering**
- Multivariate Clustering
- Density-based Clustering
- Image Segmentation
- Hot Spot Analysis
- Cluster and Outlier Analysis
- Space Time Pattern Mining



Prediction

- Empirical Bayesian Kriging
- Areal Interpolation
- EBK Regression Prediction
- Ordinary Least Squares Regression and **Exploratory Regression**
- Geographically Weighted Regression
- Forest Based Prediction



Machine Learning Integration with External Frameworks



ArcGIS Notebooks For Integration, Modeling, and Automation Scripting

Providing Notebooks as an Item . . . and ArcPy Geoprocessing in a Server Integrating Interactive Data Science Computing Libraries (275+) All Types of Data ArcGIS API for Python ArcGIS **Notebook** Analytic Servers Enterprise Server XGBoost Organizes CONDA learn Code PYT6RCH SciPy Data pandas Visualization K **Analytic Servers** Ul_{li}i 🗽 🚧 (Image, Geoanalytics, Spatial) Documentation

Data

Stores/Lakes

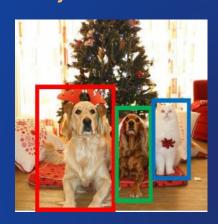
Open Science

Libraries

Flavors of Deep Learning with Imagery

Image Classification

Object Detection



Semantic Segmentation

Instance Segmentation

Al for Disaster Response Detect Damaged Buildings, Detect Damaged Roads, & Allocate Resources

The Unique Challenges of Coordinating Response

- Limited time and resources
- Need human analysis of large areas of imagery
- Multiple elements involved (detection, routing, monitoring)

We propose an Al augmented pipeline that provides an end-to-end solution

Detect damaged structures

An Al model runs on aerial imagery and outputs a feature class of damaged and undamaged structures

Detect damaged roads

An Al model runs on aerial imagery + road layer and outputs a feature class of damaged and undamaged roads

Optimal routing

ArcGIS Network Analyst consumes the damaged structures and blocked roads feature classes, and creates an optimal route from a base (fire station, shelter etc.) to all the damaged structures, accounting for blocked roadways

Situational Awareness

Utilizing the Esri Workforce mobile app, we can assign each responder a set of structures to inspect and use Operations Dashboard to monitor their progress and other key metrics

Demo

PACI: Nation wide Building Footprint Extraction

Previously: 5
People, 5
hours/day, 1 year

Now: 37,000 Buildings in 3 Minutes!

4

Beyond Detections: End to End Al Workflows with Imagery

Imagery Access Imagery Prep Training Data Prep Train & Consume Models Deploy Models to Production Run Inference at SCALE

Feedback Loop Take Action

Before ArcGIS.Learn

- Installing External DL Frameworks
- Dozens of lines of Code
- HARD!

- No Installation (Notebooks)
- 3-5 lines
- EASY

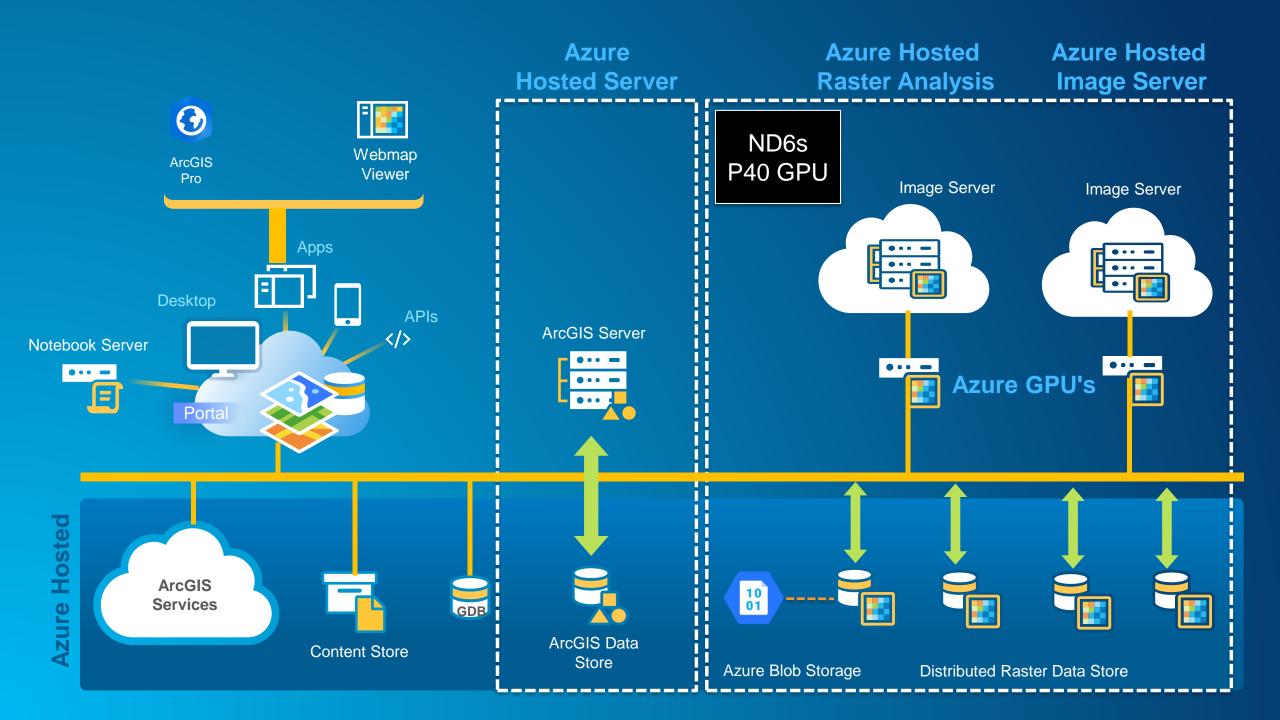
After ArcGIS.Learn

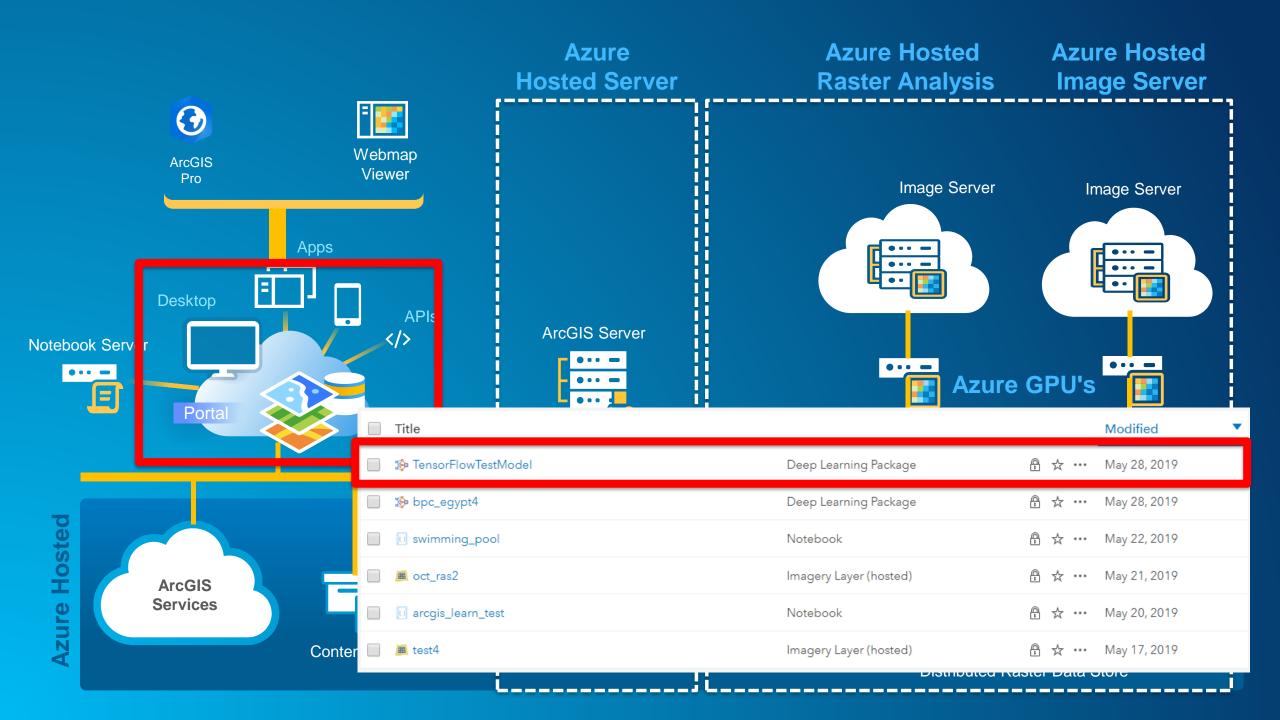
Train SingleShotDetector Model

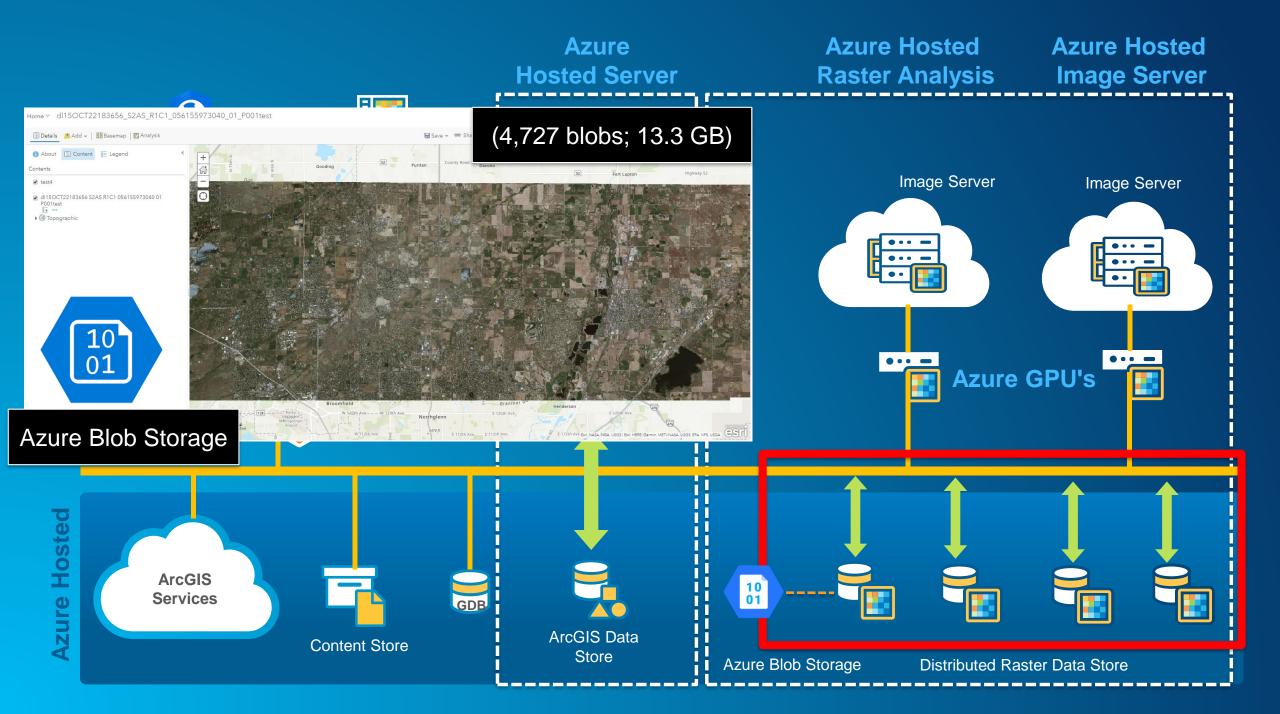
```
from arcgis.learn import SingleShotDetector

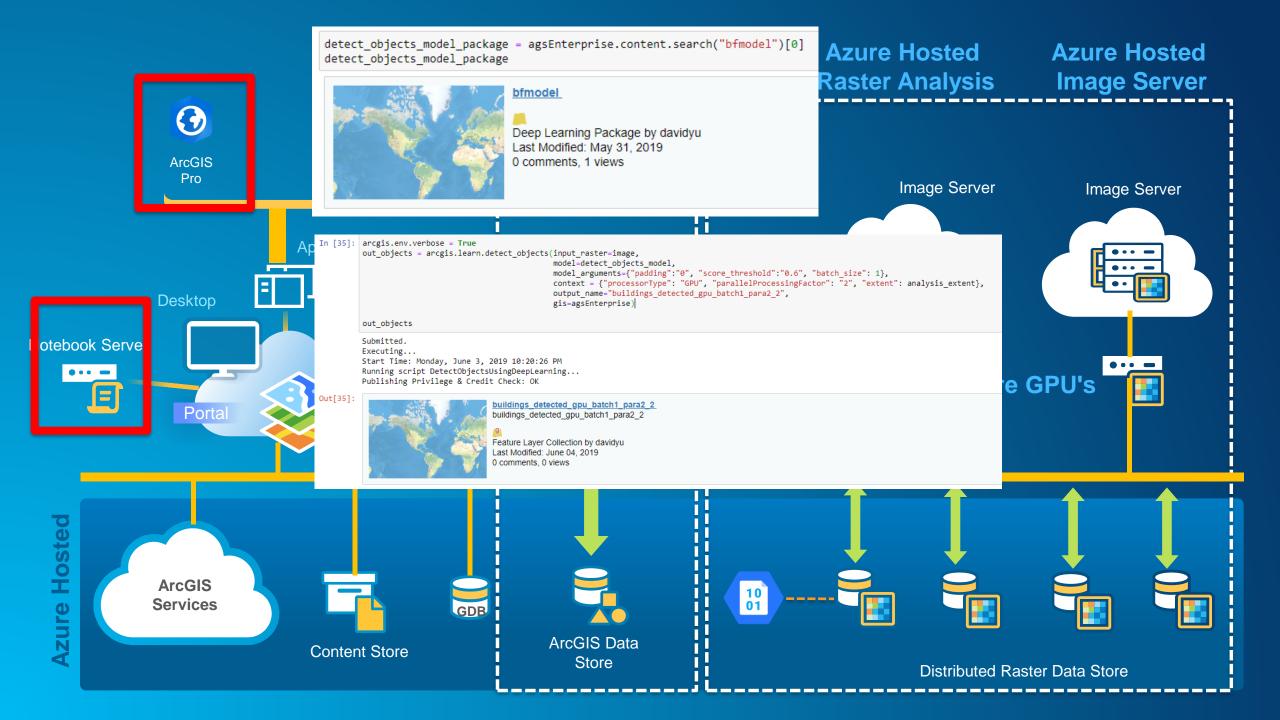
ssd = SingleShotDetector(data, grids=[9], zooms=[1.0], ratios=[[1.0, 1.0]])
```

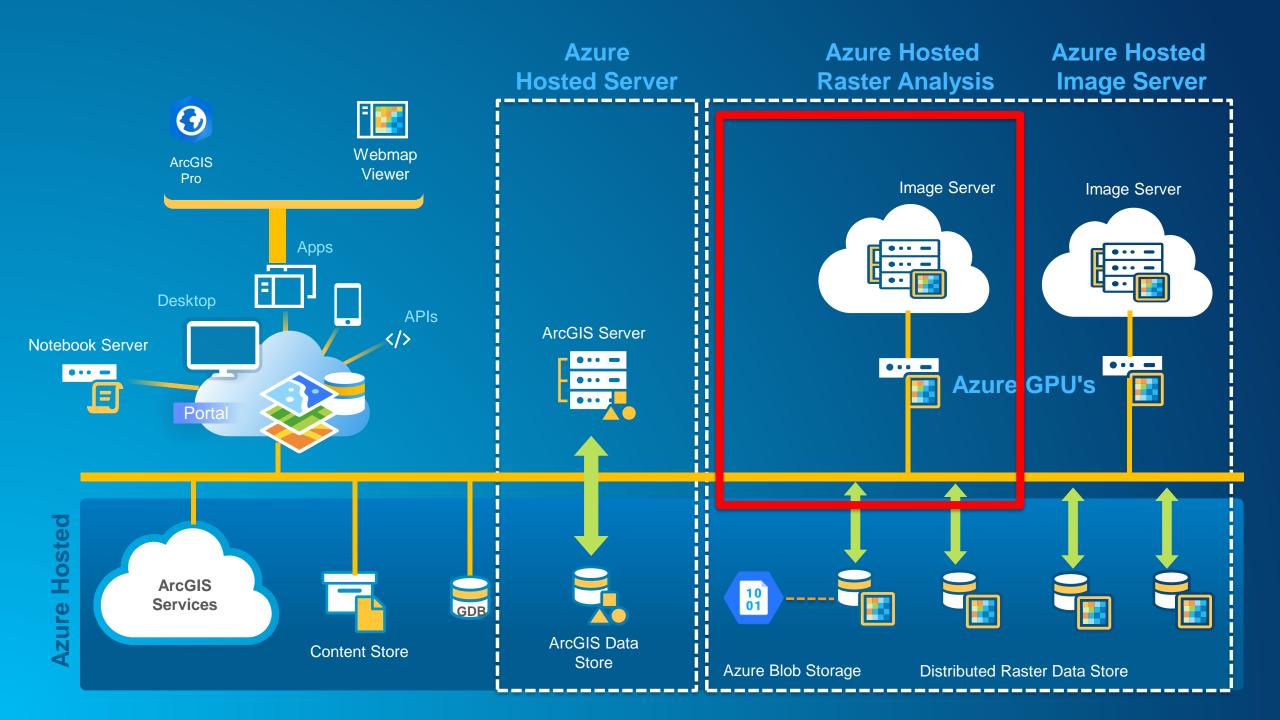

Scalable Deep Learning in the Cloud

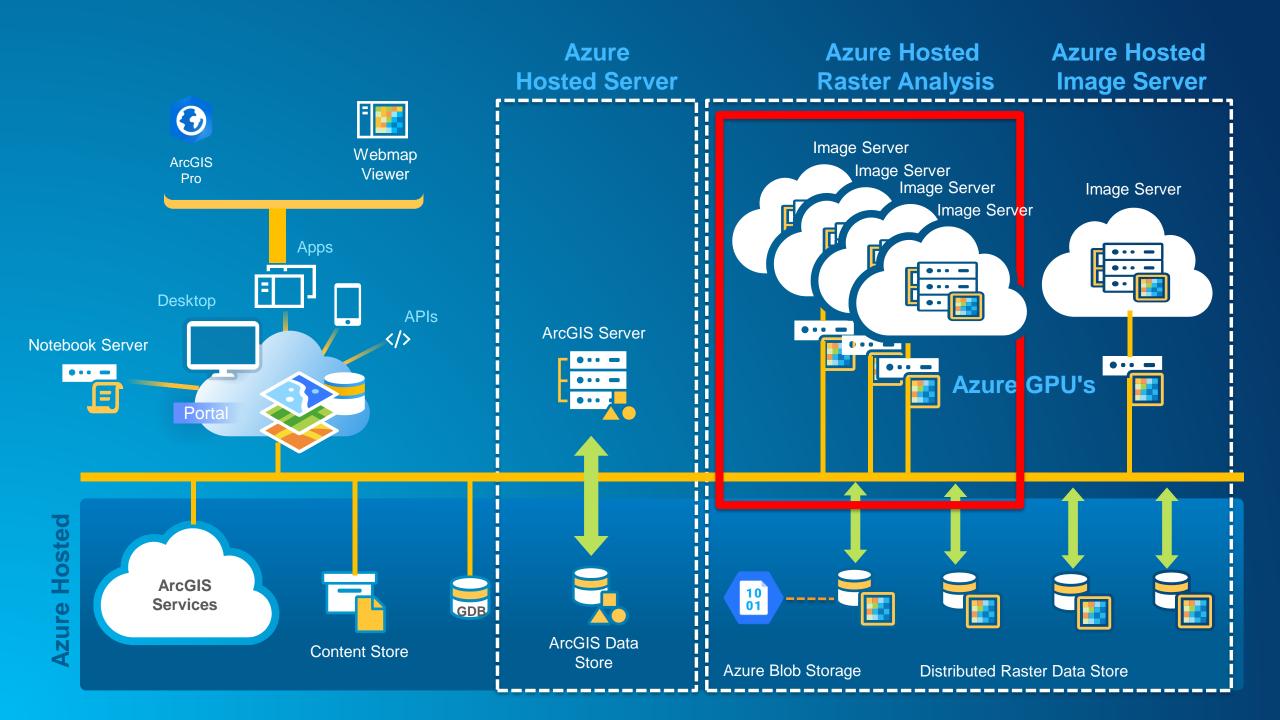




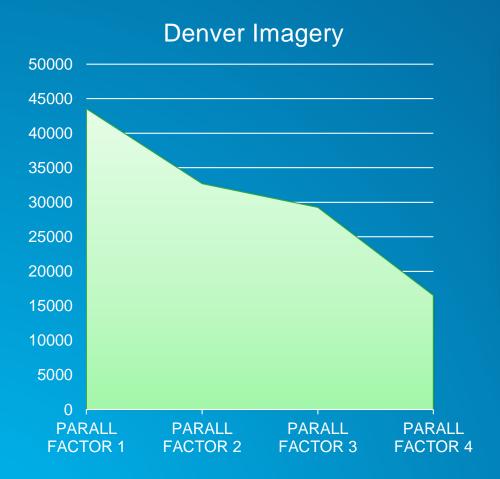








Benchmarks



Faster Inferencing using Distributed Raster Analytics

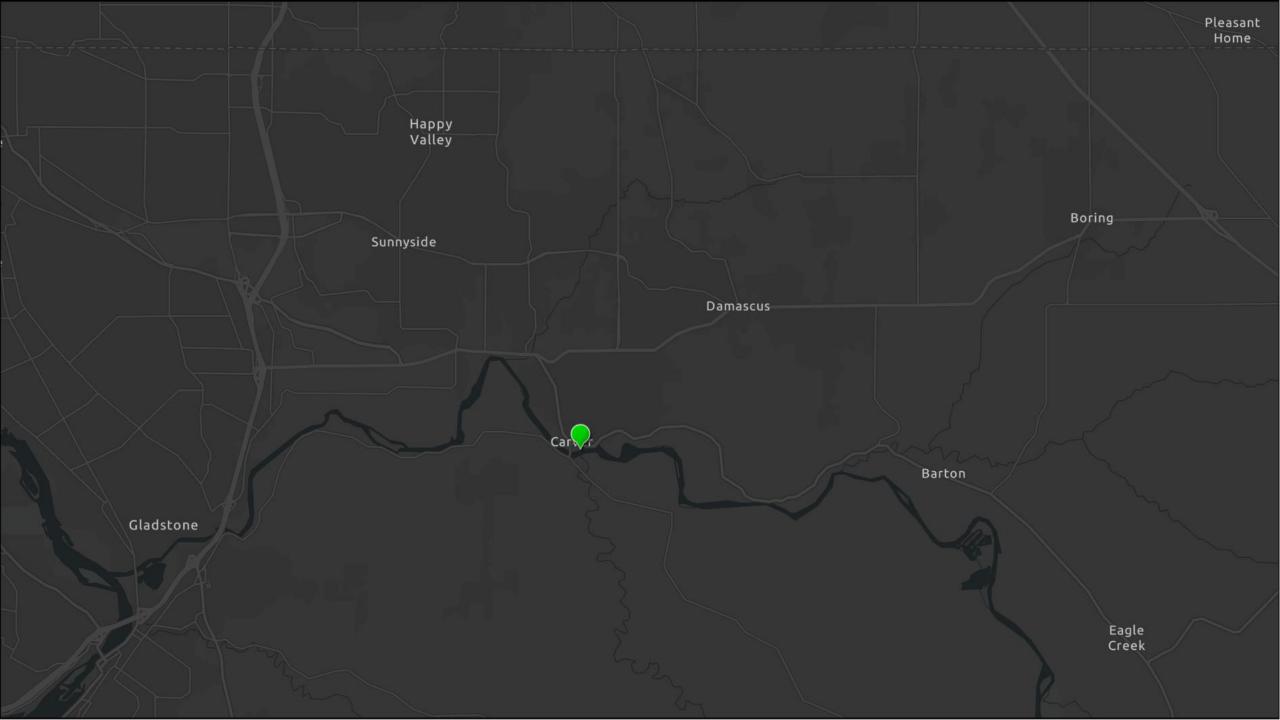
- 60,000 buildings
- Building Footprint Detection
- 1 Machine 1 GPU: 4.5 Hours
- 4 Image Servers with 4 GPUs: 20 Minutes (13X Faster)

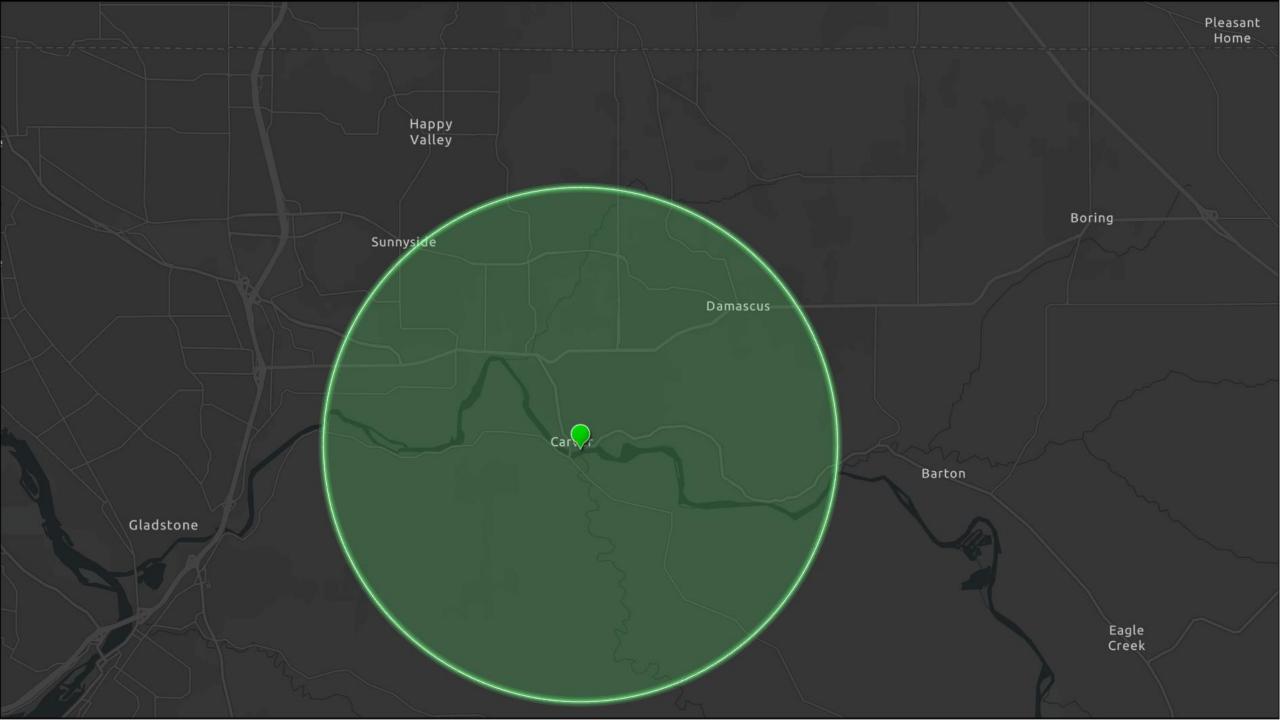
Retail Trade Area Prediction

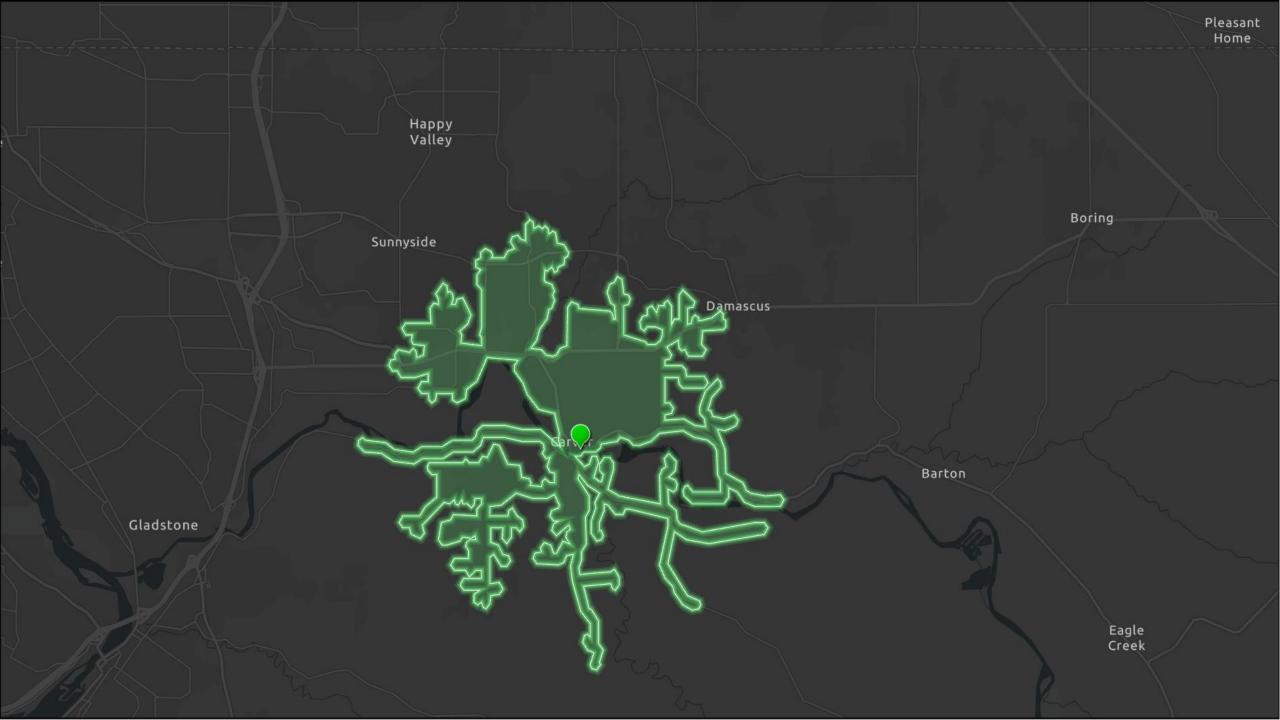
Predicting Top Areas for Targeted Marketing Spend

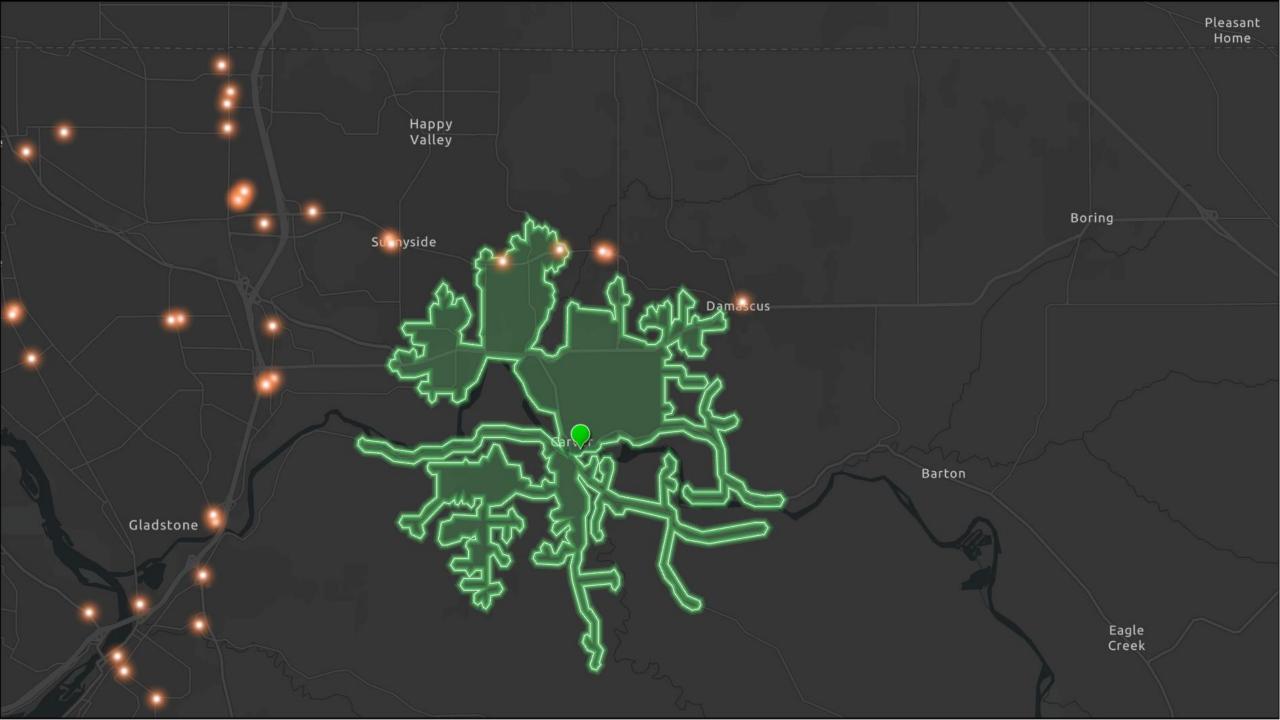
Retail

- Trade Area
 - Forecasting
 - Marketing
 - Merchandising
 - New Site Selection
 - Existing Location Closures



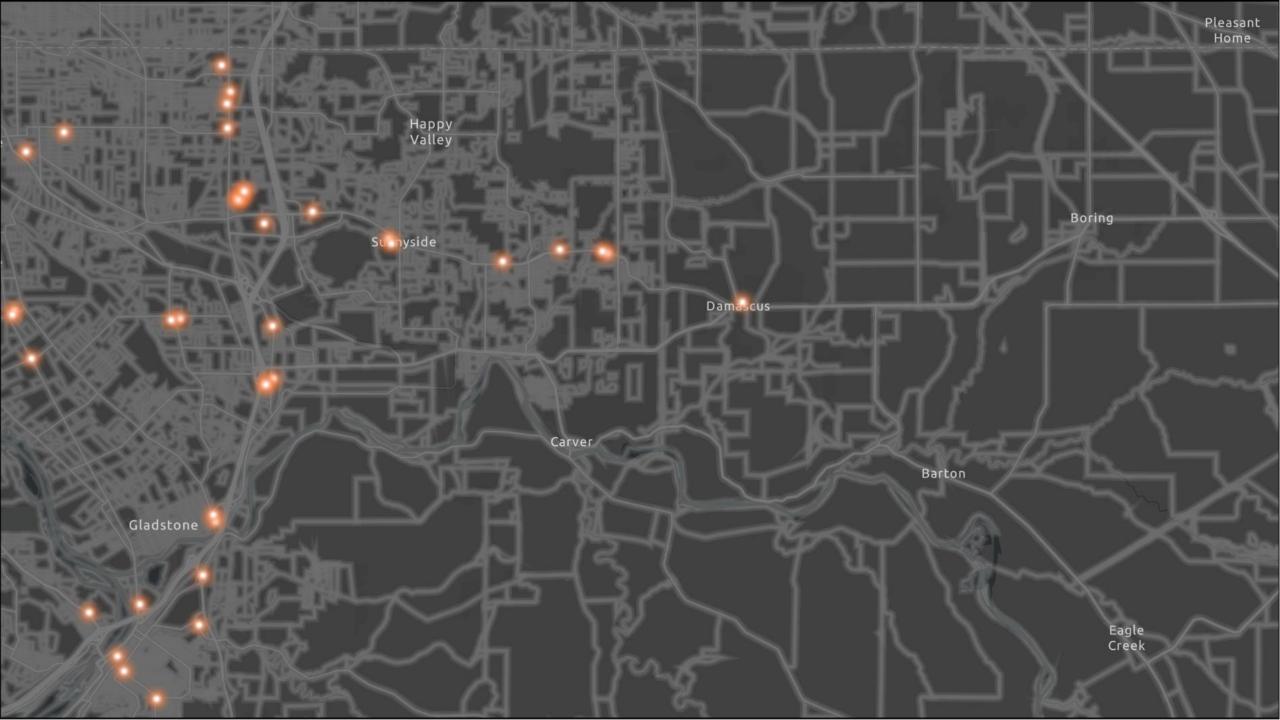


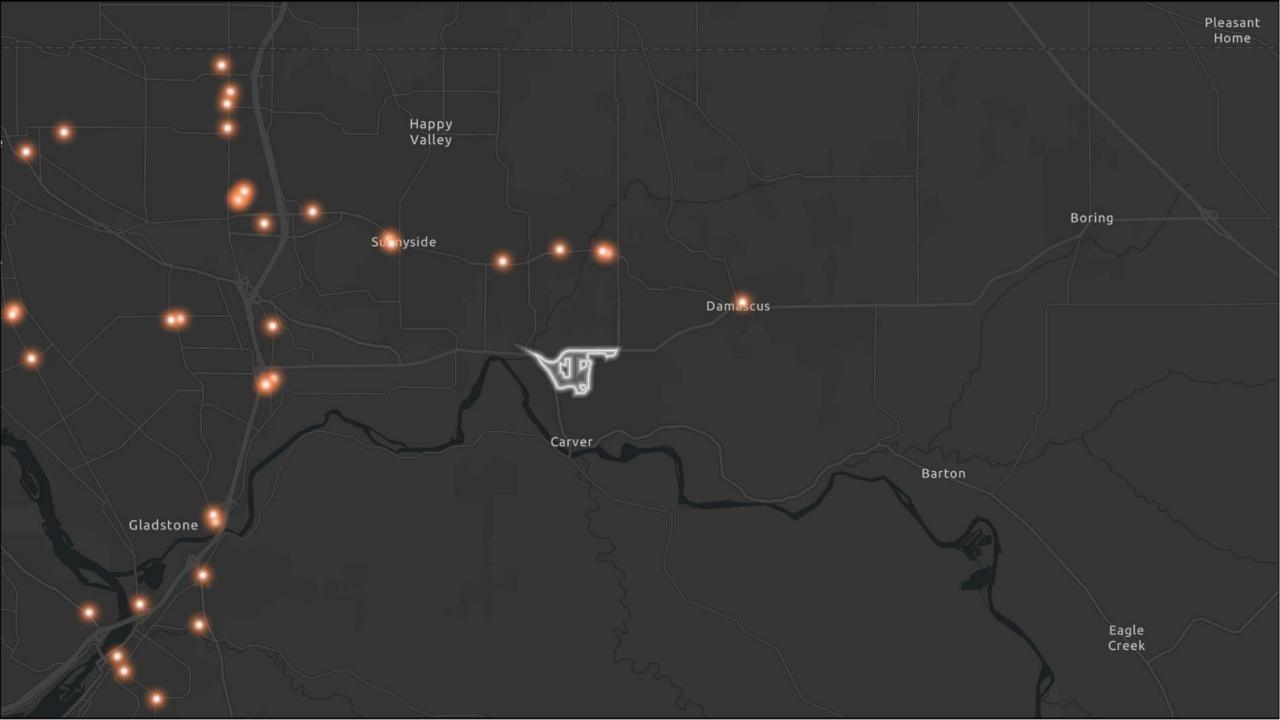


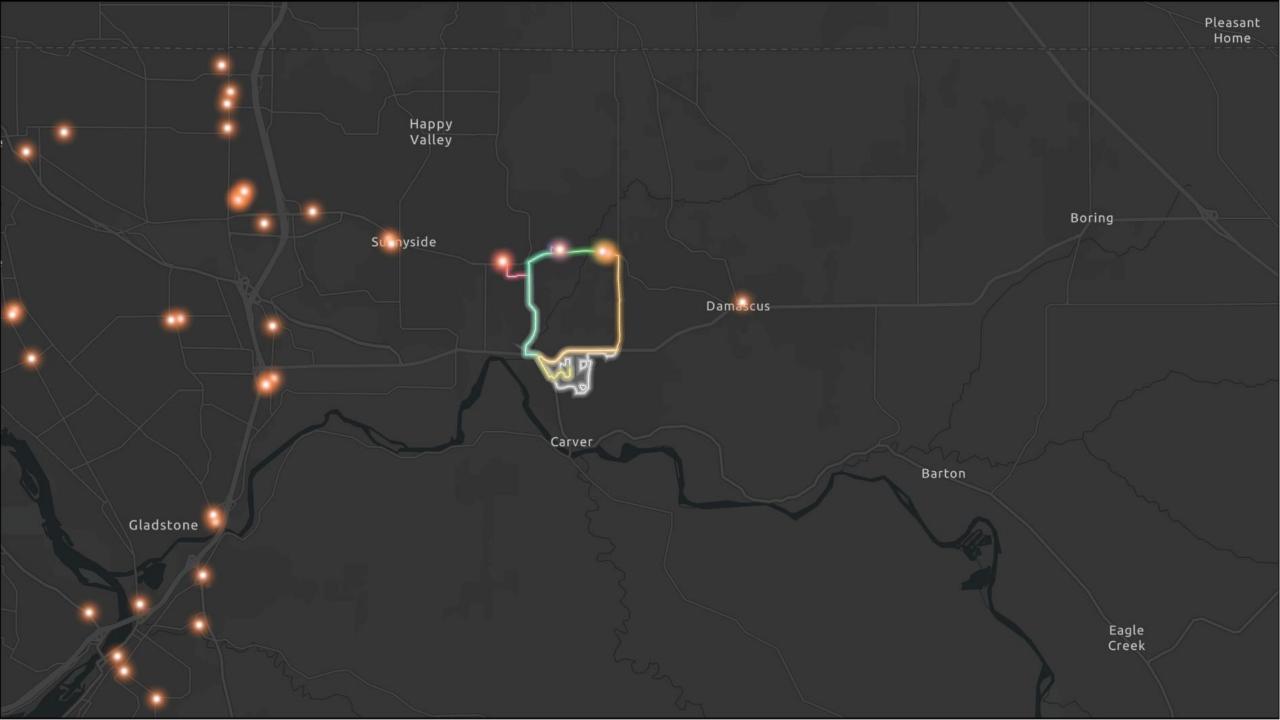


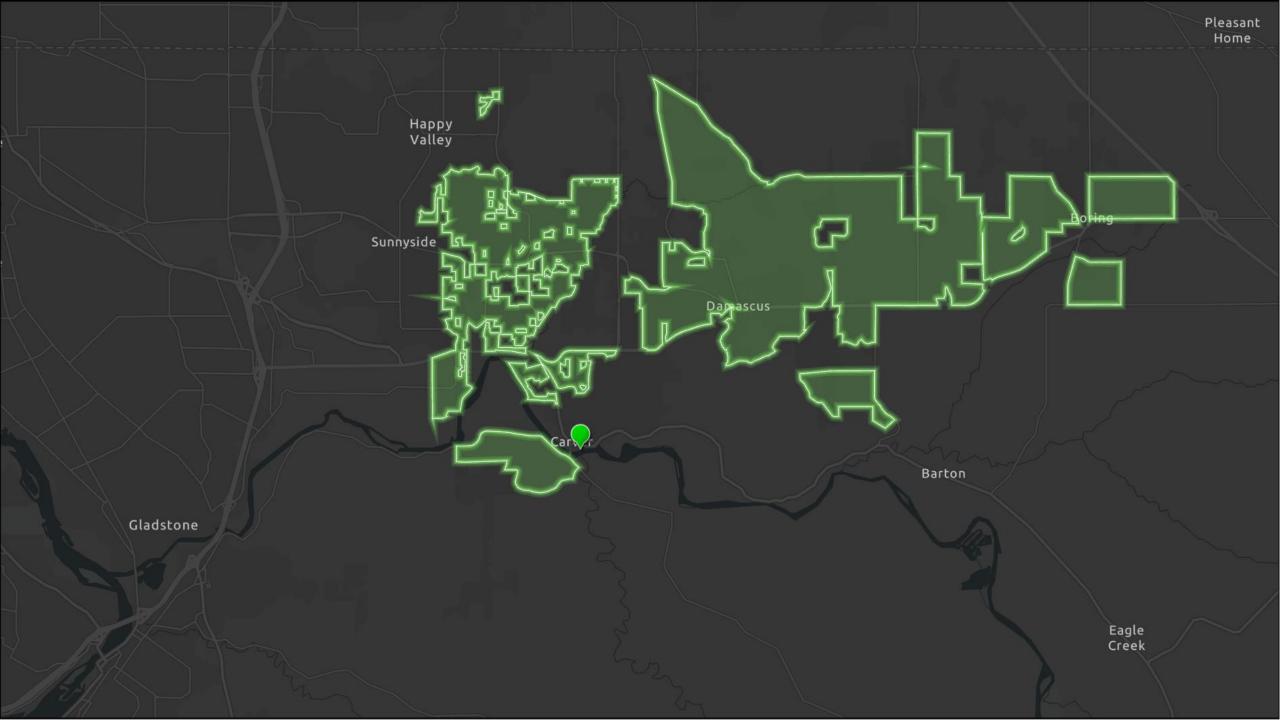
Customer Centric

- Forecast Patronage by Geography for Every Location
- Factors Considered
 - Nearest Locations currently using closest four
 - Competition
 - Cannibalization
 - Demographics over 1,200 factors
 - Brand Loyalty or Aversion if only one location, grouped together as "INDEPENDENT"









LifeMode Group: Family Landscapes

Soccer Moms

4A

Households: 3,541,300

Average Household Size: 2.97

Median Age: 37.0

Median Household Income: \$90,500

WHO ARE WE?

Soccer Moms is an affluent, family-oriented market with a country flavor. Residents are partial to new housing away from the bustle of the city but close enough to commute to professional job centers. Life in this suburban wilderness offsets the hectic pace of two working parents with growing children. They favor time-saving devices, like banking online or housekeeping services, and family-oriented pursuits.

OUR NEIGHBORHOOD

- Soccer Moms residents prefer the suburban periphery of metropolitan areas.
- Predominantly single family, homes are in newer neighborhoods, 34% built in the 1990s (Index 236), 31% built since 2000.
- Owner-occupied homes have high rate of mortgages at 68% (Index 164), and low rate vacancy at 4%.
- Median home value is \$257,400.

SOCIOECONOMIC TRAITS

- Education: 40.5% college graduates; more than 72% with some college education.
- Low unemployment at 3.8%; high labor force participation rate at 71%; 2 out of 3 households include 2+ workers (Index 124).
- Connected, with a host of wireless devices from iPods to tablets—anything that enables convenience, like banking, paying bills, or even shopping online.
- Well insured and invested in a range of

Progress

- Halo Forecasting
 - Much Easier to Predict
 - Effect of Physical Location on Online Sales in Surrounding Area
- In-Store Binary Classification Nonstandard Trade Areas

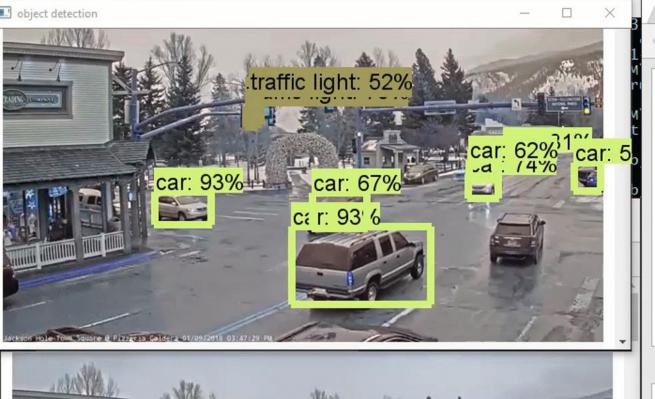
Next Steps

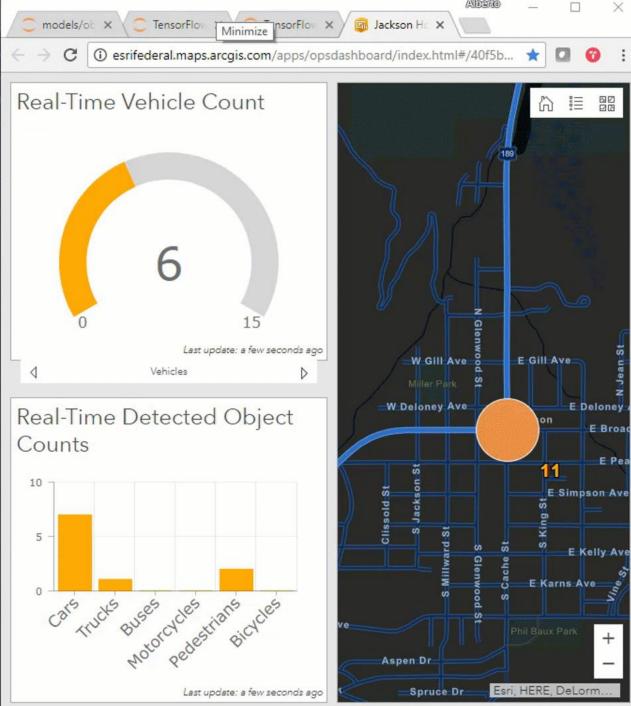
- Additional Factors
 - "On the Way to Work"
 - Right Side of the Road
 - Proximity to nearest competitor by destination
- Quantitative Prediction by Geography

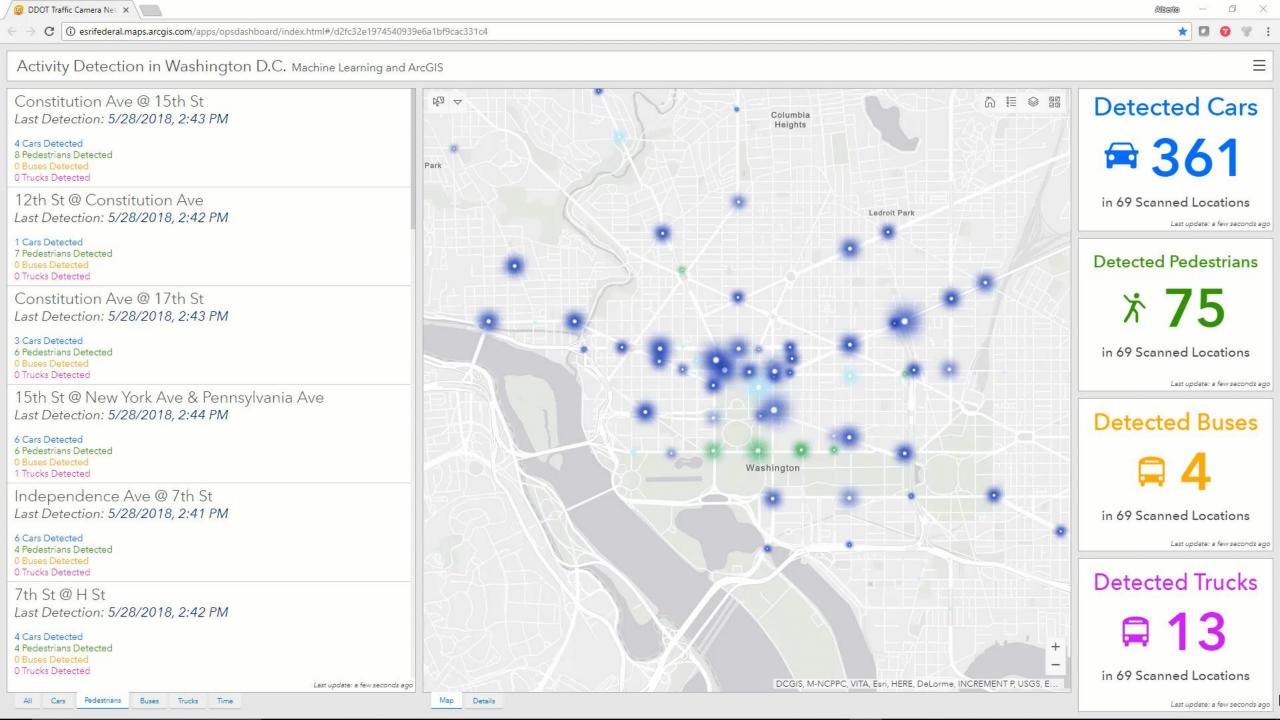
Demo

Object Detection from CCTVs

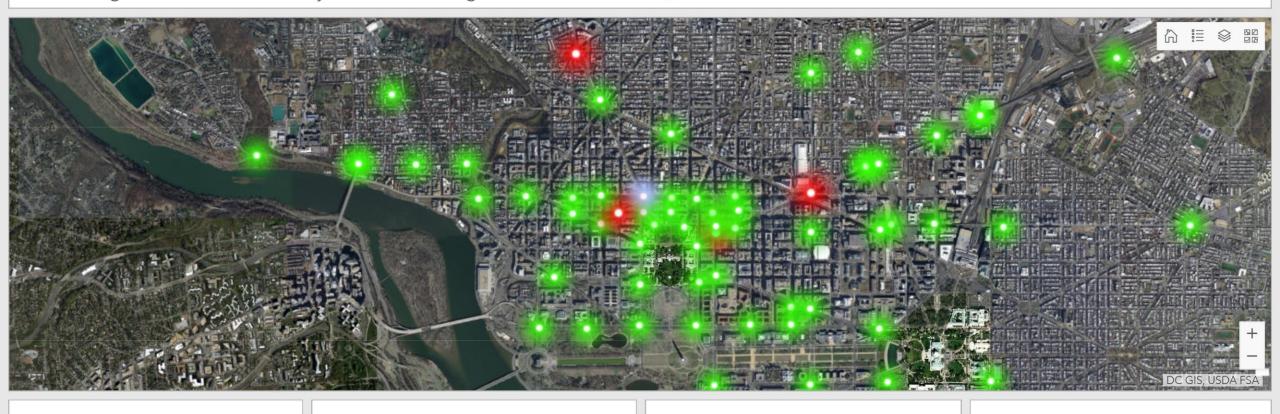
Traffic Analysis & Anomaly Detection







① Not secure esrifederal.maps.arcgis.com/apps/opsdashboard/index.html#/4049c00f127b44b0a66dd77c9ea87171



Car Trends Above Normal

From 65 observed locations

Ped. Trends Above Normal

济10

From 65 observed locations

Bus Trends Above Normal

From 65 observed locations

Truck Trends Above Normal

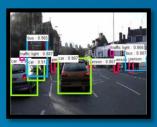
From 65 observed locations

Last update: a few seconds ago

How it works

1. Decoding Feeds to Frames

Using OpenCV or available APIs



2. Deep Learning Detects Objects

A trained DL Model detects Objects/Incidents of Interest 3. Real-Time Processing & Storage

Detected Objects passed as Streams to GeoEvent for Real-time Processing, BDS used for Storage & Replay

4. Historical Analysis & Anomaly Detection

Analyze Patterns back in time w/ Replay capability, and Spot Anomalies. Leverage GeoAnalytics for Faster Processing

4. Visualization & Real-time Analytics

Operations Dashboard is used to Visualize Real-Time Traffic Patterns & Analytics

Demo

Object Tracking & Path Tracing

Workflow

S 1

| Company |

Build and run vehicle detection model

S1

Reference model detections against designated areas (parking lot, drive-thru etc.)

* Very early model prototype video

S1 Vehicle ID Time Location On Property Type 1 2007-04-05T14:30 Parking 0:10:23 Sedan 2 2007-04-05T14:30 Entrance 0:00:01 Other 0:04 Pickup 3 2007-04-05T14:30 Drive-thru Parking 1 2007-04-05T14:31 0:10:24 Sedan 2 2007-04-05T14:31 Drive-thru 0:00:02 Other 3 2007-04-05T14:31 Drive-thru 0:04:01 Plckup Parking 1 2007-04-05T14:32 0:10:25 Sedan 2 2007-04-05T14:32 Drive-thru 0:00:03 Other 3 2007-04-05T14:32 Window 0:04:02 Pickup

Build vector dataset of vehicle movements

Build model to detect key metrics (like drive-offs) and place results into dashboard

Static & Dynamic Heatmaps

Road Feature Detection & Geotagging

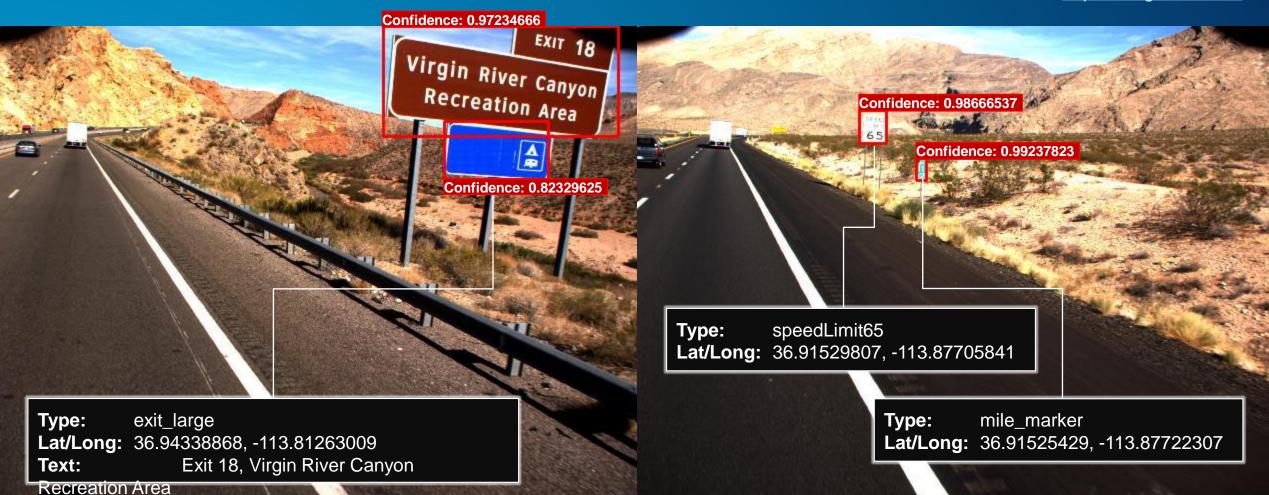
Detecting Road Signs, Detecting Text, Inferring Sign Location

Road Features

- Road signs
- Guard rails
- Curbs
- Road cracks
- Pavement markings
- Other road features

Detection Sample

https://arcg.is/001veL



Project Architecture / Tech Stack

Demo

Road Cracks Detection

Discover and Quantify Road Cracks, Prioritize Work Orders, & Improve Operations

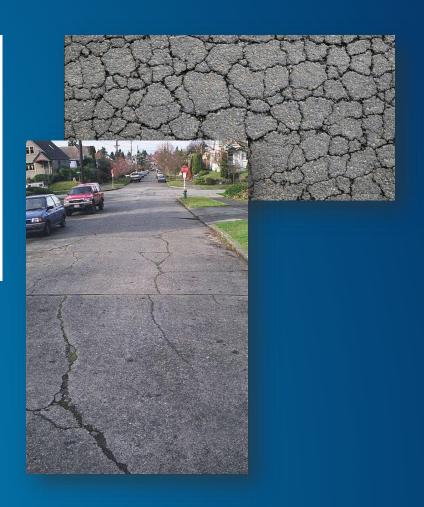
Training a Deep Learning model to detect different types of Road Cracks

Table 1: Road damage types in our dataset and their definitions.

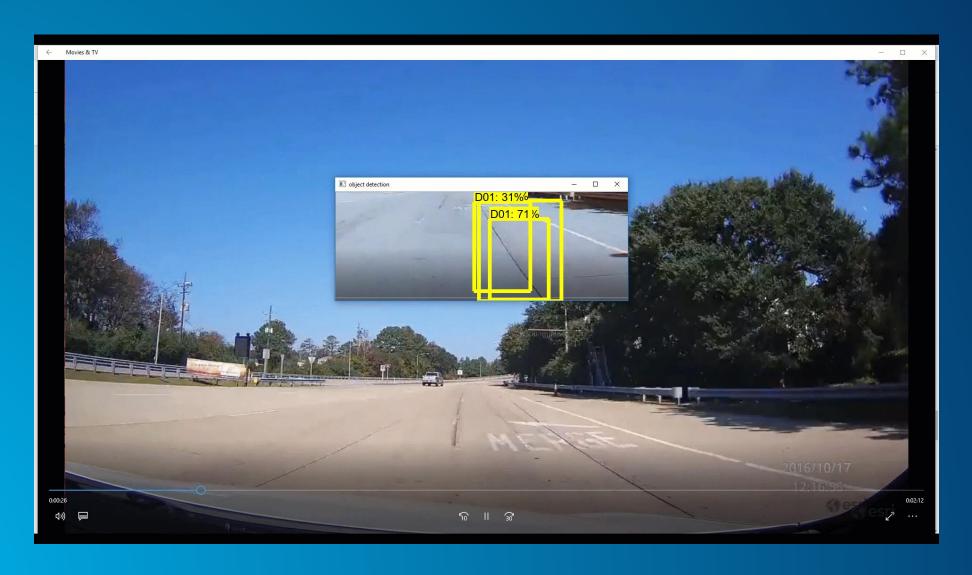
Damage Type			Detail	Class Name
		Longitudinal	Wheel mark part	D00
Crack	Linear Crack		Construction joint part	D01
		Lateral	Equal interval	D10
			Construction joint part	D11
	Alligator Crack		Partial pavement, overall pavement	D20
Other Corruption			Rutting, bump, pothole, separation	D40
			Cross walk blur	D43
			White line blur	D44

Source: Road Maintenance and Repair Guidebook 2013 JRA (2013) in Japan.

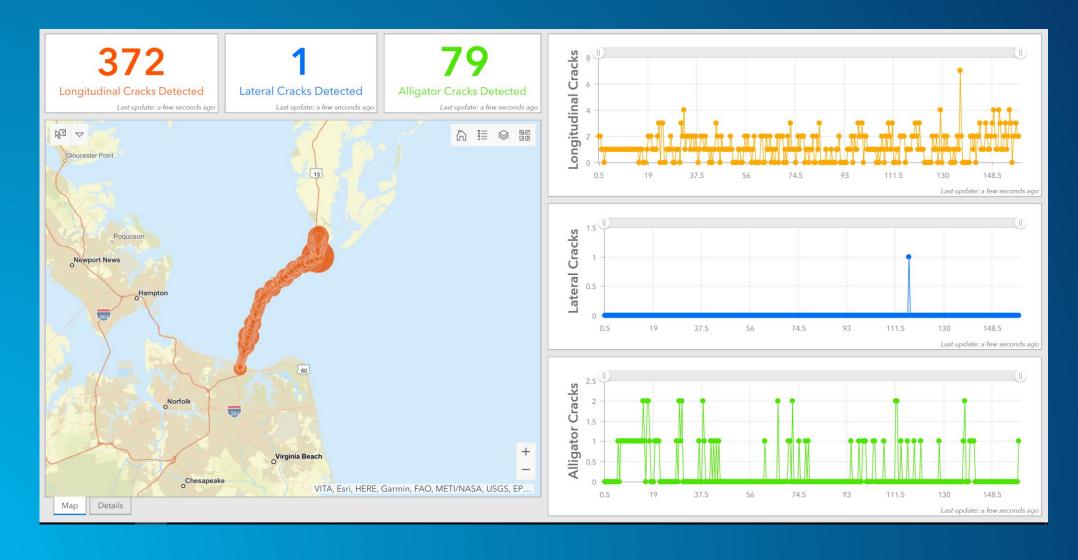
Note: In reality, rutting, bump, pothole, and separation are different types of road damage, but it was difficult to distinguish these four types using images. Therefore, they were classified as one class, viz., D40.



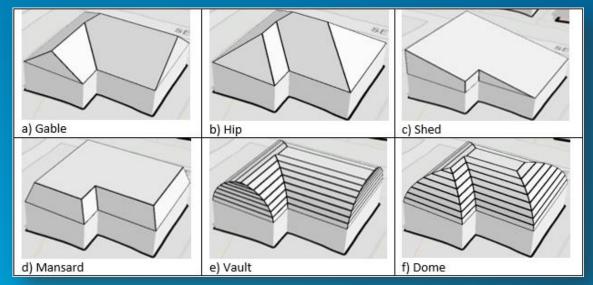
Real-Time Detection of Cracks (Video)



Visualizing Areas with Highest amount of Cracks



Complex Roof Types

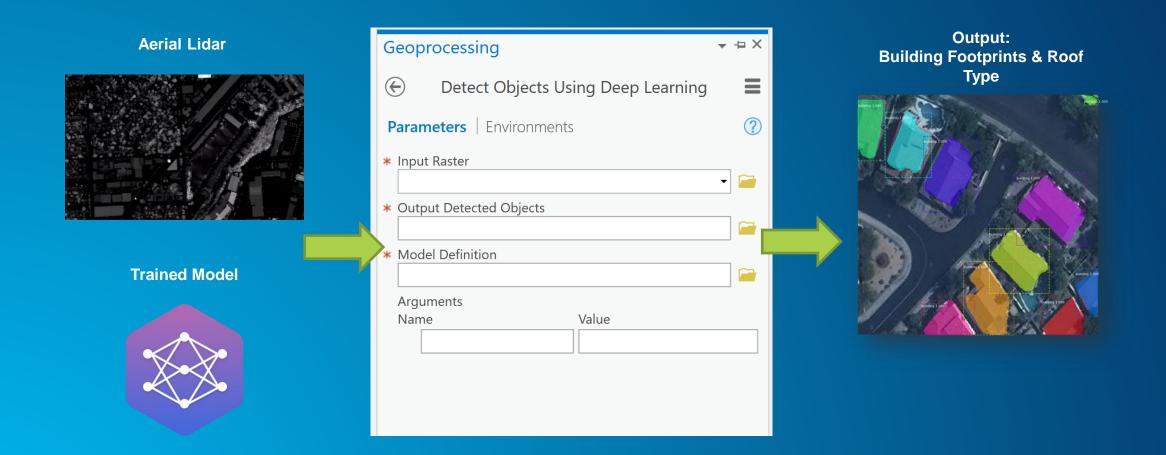


Rasterized Aerial LiDAR

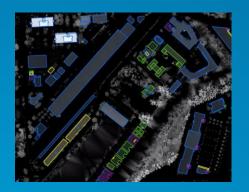
Manually digitized Hip (purple) and Gable (orange) segments

3D reconstruction of building using manually digitized segments

Inference through Detect Objects tool in Pro 2.3



Workflow



Labelled Lidar or Aerial Imagery

Export Training Data for Deep Learning tool

Train Model using Mask RCNN

Raster Function Runs Model w/ New Imagery

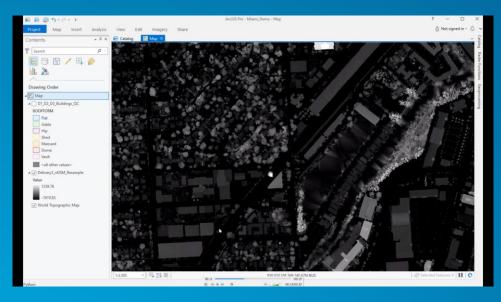
Output: Detected
Buildings
+ Roof Type, Footage,
Height and # Floors (if
we have Lidar)

Regularize Building Footprint (GP)

Buildings Converted to 3D

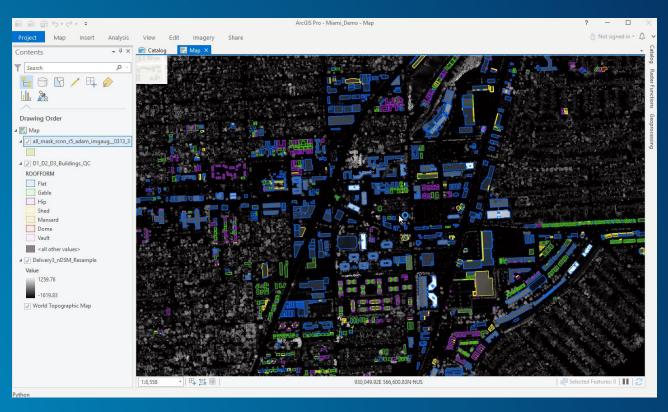
Automated Buildings Detection using Deep Learning

1. Labelled Lidar or Aerial Imagery



3. 3D Buildings w/ Roof Types

2. Detected Buildings



Demo

