

Kaibab Plateau

- 9200 ft (2817m) elevation
- Precipitation: 652 mm/yr
- Winter Snow, Summer Monsoon
- 90-100m of Limestone
 Bedrock
- Karst Environment

KARST ENVIRONMENTS

Grand Canyon National Park Grand Canyon Aquifers and Drinking Water

Groundwater Vulnerability

Evaluate Risks to Grand Canyon Groundwater and Drinking Water

- Sinkholes as Vulnerability Indicators
 - Direct Conduit to Groundwater
 - Higher Density Near Faults

Grand Canyon National ParkKaibab Plateau >1,630 square km

U.S. Department of the Interior National Park Service

NATIONAL PARK SERVICE

Tiyo Point Trail Area—LiDAR "Bare Earth" Hillshade

Extract "Depressions" from 1-meter DEM

- 1. "Smooth" DEM (3x3 cells)
- 2. "Fill" Depressions to Pour Points
- 3. "Calculate" Difference Raster (Representing Depressions)
- 4. Convert Raster to Polygons
- 5. Remove Small (<3 m²) Polygons
- 6. "Smooth" Remaining Polygons

Grand Canyon National ParkTiyo Point Trail Area—"Depressions"

Grand Canyon National ParkKaibab Plateau

Delineate "True" Sinkhole Features

- 1. Develop Training Dataset
- 2. Characterize Depressions as Sinkholes (presence) or Non-Sinkholes (absence)
- 3. Develop Independent Variables
- 4. Classify Depressions via ITERATIVE Correlation Modeling ("Machine Learning")
- 5. Field Validate Models

Training Dataset

- Ten Randomly Generated 1 km²
 Training Areas
- 3,057 Depression Features (~1%)
- Three Reviewers per Depression
 Feature (Visual Inspection of Hillshade)
- Classification as "Sinkhole" or "Non-Sinkhole"

Sinkhole Independent Variables

- 1. Depth Related
 - Mean and Maximum Depth
 - Volume
 - Depth Index (~Slope)
- 2. Surface Shape
 - Area, Perimeter, Length, Width
 - Elongation, Circularity Index, Compactness
- 3. Orientation
- 4. Concavity (Curvature)

Grand Canyon National Park Iterative Modeling

Random Forests Machine Learning

Model Iteration

- Dependent Variable Weight
 - Sinkhole (2)
 - Non-Sinkhole (1)
- Presence/Absence Training Data
 - 1, 2, 3 Reviewer Classifications

- ✓ Model Internal Performance Metrics
- ✓ Visual Inspection of Outcomes

Field Validation of Models

- 2.5 mile² Validation Survey Area
- 64 Randomly Selected Depressions (multiple size classes) Field Inspected
 - •23 Sinkholes
 - •41 Non-Sinkholes

Sinkhole Modeling Results

- 257,519 LiDAR "depressions" within 1,634 square km (Kaibab Plateau)
- 6,973 (2.7%) of "depressions" are Sinkholes
- 79% Overall Internal Model Accuracy
- 87.5% Overall Field Validation Accuracy
 - 78.3% of Sinkholes Correctly Classified
 - •92.3% of Non-Sinkholes Correct

Grand Canyon National ParkTiyo Point Trail Area—"True" Sinkholes

Grand Canyon National ParkKaibab Plateau Sinkholes

Grand Canyon National ParkKaibab Plateau Sinkhole Density

Kaibab Plateau Sinkhole Density and Mapped Faults

Grand Canyon National Park Dye Trace Studies Area

2016 - 2017 Dye Detections

Grand Canyon National ParkGrand Canyon Aquifers

Grand Canyon National ParkModified COP Aquifer Vulnerability

Shallow, C Aquifer

Deep, R Aquifer

Thank You!