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Introduction

- Urban groundwater (GW) is usually vulnerable to pollution.

- The main sources of GW quality degradation are:

- Anthropogenic activities
- Natural processes

- Atmospheric input

- Subdividing the region into zones based on GW quality is usually undertaken.

- Recently, several methods are used, such as Genetic Algorithm, Model-Based Approach,

Bayesian Approach, cluster analysis ... etc.

- In this study, spatially constrained multivariate clustering method (SCMC) is used to

subdivide Madina city (West KSA) into several zones based on six GW chemicals.



Introduction (cluster analysis overview)
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Figure 1, Taxonomy of methods for solving regionalization problems
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Study area description (General Location)

«Madinah city (West KSA) is selected. =

<+The population about 1.25 million + 10
million annual visitors.

<«covering an area of 522 km?

<In this study, The wells inside the 3rd
ring road is selected for analysis.

+These wells are located in private
farms.
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Study area description (Geology)

+The geology of the study area consists
mainly of three parts;
< lava plateaus (volcanic basalt flows)
<alluvial deposits
»rock outcrops (pre-cambrian rock).

+The first two parts are the places of
shallow groundwater aquifers.

+50% of the study area is covered by
volcanic basalt rocks




Study area description (Topography) -+

- The elevation ranges from 570 m
(a.m.s.l.) up to 1,100 m.

- Strong relationship between wells
location and watercourses (ephemeral
streams)

- Streams

® Wells
DEM (m)
1077




Study area description (wells location)
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Data set +

»456 private farms inside the 3" ring road are visited.
»From each farm, one well location is registered using GPS.

>Water samples from the wells are collected and taken to the laboratory
for analysis (pH, TDS, EC, hardness, turbidity, alkalinity, color, ions
(cations and anions).

>Three cations (Na, Ca, Mg) and three anions (Cl, HCO,, SO,) are selected
for cluster analysis.

Min. 30 22
Max. 2520 1168

Avg. 543 304
Media 433 256
STD 381 201




Distribution of Na
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Methodology (clustering in ArcGIS Pro)

4 Spatial Statistics Tools
= Analyzing Patterns

- The Three new cluster methods in ArcGIS + &3 Mapping Cluster

Ef Cluster and Cutlier Analysis (Anselin Local Moran's [}

P r O ar e: ‘J__Ej' Density-based Clustering
- density-based clustering, e
=] Multivariate Clustering
- m u |t|V3.r I ate CI u Sterl N g an d J;E_f Optirnized Hot Spot Analysis
a 0 - 5 o J:E_r Optirmnized Outlier Analysis
- spatially constrained multivariate clustering R
(SC M C) . Ef Spatially Constrained Multivariate Clustering

= Measuring Geographic Distributions

= Medeling Spatial Relationships

b Ea Utilities

SCMS is the process of grouping of the observations based on the attributes
similarity and location similarity using multiple objective optimization.
maximizing within-group similarity
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Methodoloqgy (theoretical background)

- In ArcGIS Pro, spatially constrained multivariate clustering tool uses Spatial K’luster
Analysis by Tree Edge Removal (SKATER) algorithm which is based on minimum
spanning tree (MST) method

First iteration:

Minimum Spanning Tree

Tteration 0: G* = MST. We select the edge
S Set T, =(V.L). where V,={v}and

L=¢

which has the largest objective function.

Find the edge of lowest cost (I, (I, ). Cut out this edge leaving two trees (T, and

Step3: T, =V Ta)

Step 4: Repeat Step 2.

Second iteration:

Find the edge of lowest cost (1, {I.{I,{, ).
Tteration 1: G* = (T, Ta). We compare the
wVevshand L3={1 1L},

highest objective functions for T, and Ta.

We split the tree T since f,(5,%)< f,(5))

Third iteration:

Find the edge of lowest cost (1 {1,{L{1, ).

L3={L.1,.L}.

Iteration 2: G* = (Ta, Ts, T4). We compare

the: highest objective functions for Ty, Tj
Final Iteration: . . .
Vv and T4. We split the tree Ts since

[USEYS fUSTS £(82)

Figure 3 — Partitioning of the MST

Figure 2 - Construction of the minimum spanning tree.

construct the network graph by find the shortest path that minimizes the
connecting the contiguous nodes sum of dissimilarity (or maximizing the sum
_ with lowest cost. of similarities) — minimum spanning tree

Source: Assuncao et al (2006)



Geoprocessing

M et h O d O | O g y -::Eﬁ:' Spatially Constrained Multivariate Clustering

° Sp atl al Iy con Stral N ed M u Itlvarl ate Cl u Sterl n g Parameters Environments

Input Features

(SCMC) methods in ArcGIS Pro has two main Madinah_GW
groups of input parameters: e
- Three required input: .
- Input layer rFJH R S
- The name of output layer -
- Selected attributes for analysis S

S04

- Five optional input:
- Cluster size constraints (None, No. of features, Attribute value)

Constraints

- Number of clusters None
Mumber of Clusters

- Spatial constraints Spatial Constraints
Trimmed Delaunay tri@pjﬁ’@n alin put

.- Permutations Membership probabilities Femutstons o Cleue
L .
- Qutput table for evaluating number of clusters

AN

Output Table for Evaluating Number of Clusters




Methodology (Scenarios formulation)

- Four groups of scenarios are developed based on the optional input
parameters:

- Group (A) scenario : no optional input and the optimum number of clusters is
computed automatically.

- Group (B) scenarios : three optimum No. of clusters are specified (2, 3 and 7).

- Group (C) scenarios: min. No. of features per cluster is specified (20, 40), with fixed
number of cluster (= 7 clusters).

- Group (D) scenarios: min. no. and max. no. of features per clusters are specified (“25,
150” and “50, 100”), the optimum number of clusters is computed automatically.

Group (A) scenario Group (B) scenarios Group (C) scenarios Group (D) scenarios

Cluster Size Constraints Cluster Size Constraints Cluster 5ize Constraints

Mumber of features
i Minimum per Cluster

| Fillto Limit

i Spatial Constraints

Trimmed Delaunay triangulation




Results & Discussions (Group (A) scenario)

No optional input and the optimum number of clusters is computed automatically
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Results & Discussions (Group (B) scenarios)

Most of the clusters methods need from the user to specify the optimum number of clusters
Unfortunately, this is still unsolved problem and there is no definitive answer to this
guestion.

Determining the optimal number of clusters is somehow subjective.

In this study, the optimum number of clusters is determined by evaluating 30 indices using
R programming language (NbClust R package).

Selection of the optimum No. of cluster is based on the “majority rule”.

among all indices:

Optimal number of clusters -k =2
as the best number of clusters
as the best number of clusters
as the best number of clusters
as the best number of clusters
as the best number of clusters
as the best number of clusters

0 as the best number of clusters

proposed
proposed
proposed

proposed
proposed
proposed
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2

6

6
# 1 proposed
-

2

4

\ number of clusters : ; ;

Number of clusters k

- 2,3 and 7 are selected as the optimum




Results & Discussions (Group (B) scenarios)

Three optimum No. of clusters are specified (2, 3 and 7)

No. of clusters = 2 No. of clusters = 3

No. of clusters =7
_ 39030’ ] 39°40' : : '
e, = o cuwi rae 2
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Features Per Cluster Chart

Features Per Cluster Chart
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Results & Discussions (Group (B) scenarios)

No. of clusters = 2 No. of clusters = 3 No. of clusters =7

Spatially Constrained Multivariate Clustering Box-Plots

Spatially Constrained Multivariate Clustering Box-Plots
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Results & Discussions (Group (B) scenarios)

No. of clusters = 2 No. of clusters = 3 No. of clusters =7

Distribution of Membership Probability Distribution of Membership Probability
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Results & Discussions (Group (B) scenarios)

No. of clusters = 2 No. of clusters = 3 No. of clusters =7

39°30'
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Results & Discussions (Group (C) scenarios)
Assuming the optimum No. of cluster =7

7 clusters, no min. No. of features 7 clusters, min. No. of features = 20

7 clusters, min. No. of features = 40

Features Per Cluste Features Per Cluster Chart
186

Features Per Cluster Chart
151

Cluster

Cluster

Cluster
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Standardized Values

Results & Discussions (Group (C) scenarios)

7 clusters, no min. No. of features 7 clusters, min. No. of features = 20 7 clusters, min. No. of features = 40

Spatially Constrained Multivariate Clustering Box-Plots Spatially Constrained Multivariate Clustering Box-Plots
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dized Values

Standardized Values

HCO3 Mg
Analysis Fields




Results & Discussions (Group (C) scenarios)

7 clusters, no min. No. of features 7 clusters, min. No. of features = 20 7 clusters, min. No. of features = 40

q nan




Results & Discussions (Group (D) scenarios)

Specifying the margins (boundaries) of the No. of features per cluster

Min. No. of features/cluster = 25 Min. No. of features/cluster = 50
Max. No. of features/cluster =150 Max. No. of features/cluster =100

Features Per Cluster Chart Features Per Cluster Chart

150 98

Dlﬂml DID




Results & Discussions (Group (D) scenarios)

Min. No. of features/cluster = 25 Min. No. of features/cluster = 50
Max. No. of features/cluster = 150 Max. No. of features/cluster = 100

Spatially Constrained Multivariate Clustering Box-Plots
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Standardized Values
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Results & Discussions (Group (D) scenarios)

Min. No. of features/cluster = 25 Min. No. of features/cluster = 50
Max. No. of features/cluster = 150 Max. No. of features/cluster = 100
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Results & Discussions (more spatial control using spatial weights)

Cluster Size Constraints

Mone

We ighted Optl m |Zat|0n Mumber of Clusters
; s . . (1) Spatial Constraints
wi(attribute similarity) + wa(geometric centroids) Trimmed Delaunay triangulation

g Trimmed Delaunay triangulation
w +wy = |

Get spatial weights from file
iterate until contiguity constraint is satisfied

bisection method
wz is weight for centroids, wi = | - w»
start with 0.0 and |.0
then move to 0.50 - check contiguity
if contiguous, then to midpoint to the left of 0.50
if not contiguous, then to midpoint to the right of 0.50

etc... until contiguous with the highest bSS/tSS ratio

""' SPATIAL
) ‘ DATA
'\ SCIENCE
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Results & Discussions (Cluster results evaluation)

- Higher Goodness of fit index is better B/
. (k—1)
Goodness of fit idex = T

/(n— k)

- B = between-cluster sum of square error (SSE) —
need to be maximized

- W = within-cluster sum of square error (SSE)
- K =the number of clusters
- N =the number of features (observation)



Conclusion

- SCMC method in ArcGIS Pro found to be powerful tool for spatial

clustering with

many options and functionalities.

- SCMC method as many Clustering methods needs full
understanding of the data used.

- One of the best scenarios is sub-dividing the city based on GW
guality into three zones which are; Upper zone with good quality,
city center zone with moderate quality, and lower (downstream)

zone with low ©

uality.

- The results of t

nis study will be beneficial not only for the

- farmers but also for the local government, environmental
/ agencies and investors in agriculture.
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