Modernizing the Los Angeles County Assessor's 40-Year-Old CAMA System

James Kulbacki

Agenda:

- Background & Problem
- MRA as Traditional Approach to CAMA
- GWR as Modern Approach to CAMA
- Analysis & Discovery with ArcGIS Pro
- Implementation with Machine Learning

MOJAVE DESER

Legacy Systems

- **Technology**: Built in 1980's using 1970's tech.
- Location: No spatial intelligence.
- **Methods**: Evolving AVM models unsupported.
- Data: Can't adapt to availability of new data.
- **Code**: COBOL, JCL, others......Fear of change and breaking something.
- **Platform**: Can't scale for economic cycles or alternate uses.

The Mission! Replace the mainframe

EL PASO OP

ONTE VISTA ST

NUE 52

4 LOMA

AVENUE 60

Assessor Modernization Project (AMP)

ANDO

W BLVD

- Multi-Year Project
- o \$24 Million

ENONEONO

TETOHER OF

Replace Legacy Systems

The County has grown and things have changed over 40 years.

10 Million People

88 Cities

2.4 Million Parcels

Assessed Value

4,751 Sq. Miles

Primary Duty: Determine Assessed Value

Statistics and figures from the 2016, 17, 18 Annual Report

Annual Appraisal Workload: ≈ 700,000 Appraisals in 2010

Statistics and figures from the 2016, 17, 18 Annual Report

	Characteristic	Unit		\$ /Unit		Total
	Home Size (SqFt)	1,500	X	\$75	=	\$112,500
	# Bedrooms	3	X	\$5,000	=	\$15,000
	# Bathrooms	2	X	\$10,000	=	\$20,000
	Home Age (Years)	50	X	(\$500)	=	(\$25,000)
	Swimming Pool	Yes	Х	\$20,000	=	\$20,000
	Lot Size (SqFt)	7,500	X	\$15	=	\$112,500
-	Estimated Price					\$225,000

Hedonic Pricing Model

Linear Regression & MRA: Slope of best fitting line

MRA Continued (Example): $Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \dots + \beta_nX_n + e$

Relatively easy to use and understand results.

MRA Continued....

Problems!

- Global Model for Local Problem
- Spatial Autocorrelation
- Non-Stationarity

Intercept

Estimated Price

MRA Continued....

Problems!

- Global Model for Local Problem
- Spatial Autocorrelation
- Non-Stationarity
- One (1) Equation for All

La Canada Flintridge Mt Wilson

Arcadia

"Clusters" a solution to nonstationarity & spatial autocorrelation?

- Subjectively Defined
- Potential Edge Effects
- Issues with Sample Size
- Location & Distance All Equal

Geographically Weighted Regression (GWR)

Solution?

- Local Model for Local Problem
- Individual Equations for All
- Reduce Spatial Autocorrelation
 Not Perfect....

\$350,000 = \$125,000 + (\$75 × 1,500) + (\$10,000 × 3) + (-\$500 × 25) + \$25,000

^{\$254,000 = \$130,000 + (\$50 × 1,500) + (\$8,000 × 3) + (\$0 × 25) + \$30,000}

^{\$}297,000 = ^{\$}135,000 + (^{\$}65 × 1,500) + (^{\$}9,000 × 3) + (+^{\$}200 × 25) + ^{\$}35,000

Geographically Weighted Regression (GWR)

and....

- Near homes given more weight

Everything is related to everything else, but near things are more related than distant things (Tobler, 1970)

Image courtesy of URISA.org https://www.urisa.org/awards/waldo-tobler/. Used here for educational purposes. Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. *Economic Geography*, 46, 234–240.

Geographically Weighted Regression (GWR)

....more accurately

Weighting, or decay, is determined by the "kernel" and "bandwidth"

data point

Source: Fotheringham, A. Stewart, Chris Brunsdon, and Martin Charlton. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, United Kingdom: John Wiley & Sons

Goals & Objectives

- 1. Proof of concept for stated goal (replace the mainframe).
- 2. Demonstrate replacement AVM process (GWR).
- 3. Demonstrate county-wide scalability.
- 4. Provide analysts a place to implement perfection.
- 5. A perfect solution for estimating home values.

Guiding Principles

- Remember the Mission!
- ALL models are wrong.....but some may be useful.
- PERFECT is the enemy of GOOD.
- Make it run first, make it good later, make it perfect someday.

Development Tasks

Create a prototype CAMA process.

- 1. Identify GWR Models & Create AVM Process (Attributes)
- 2. Control Sample Population (by Boundaries)
- 3. Identify Best Valuations (Results)
- 4. Store & Process Data (Workflow)
- 5. Consider Software & Scalability (Cloud & ML)

CAMA Prototype

CAMA System

1. Identify GWR Models & Create AVM Process: Using multiple attribute models.

- 2. Control Sample Population (by Boundaries)
- 3. Identify Best Valuations (Results)
- 4. Store & Process Data (Workflow)
- 5. Consider Software & Scalability (Cloud & ML)

Determine GWR Models

- Identify sample neighborhoods
- Explore housing attributes
- Test attribute models
- Diagnose issues
- Transform variables
- Identify/create missing attributes

ArcGIS Pro Analysis Tools:

- Exploratory Regression
- Clustering & Hot Spot
 OLS (MRA)
- i Moran's I

💼 GWR

Choose 4 of 22 Summary

Highest Adjusted R-Squared Results

AdjR2	AICc	JB	K(BP)	VIF	SA	Model				
0.79	3755.78	0.00	0.00	3.94	0.00	-REVERSETIME	EOFSALE***	+LOTSIZEGIS**	+MAINSTRUCTURESQFT***	+RCNTOTAL***
0.78	3758.94	0.00	0.00	3.93	0.00	-REVERSETIME	EOFSALE***	+LOTSIZEUSEABLE	E** +MAINSTRUCTURESQFT	*** +RCNTOTAL***
0.78	3761.06	0.01	0.00	4.20	0.00	-REVERSETIME	EOFSALE***	+LOTSIZEGIS***	+MAINSTRUCTURESQFT***	+RCNMAINSTRUCTURE***
								Passing Model	ls	
AdjR2	AICc		JB		K(BP)	VIF	SA	Model		
0.6875	82 3808.	57613	35 0.11	10114	0.0047	30 4.639329	0.110412	+LOTSIZEUSEABLE*	*** +QUALITYCLASSNUMBE	R*** +EFFECTIVEAGE***

Summary of OLS Results - Model Variables

Variable	Coefficient [a]	StdError	t-Statistic	Probability [b]	Robust_SE	Robust_t	Robust_Pr [b]	VIF [c]
Intercept	433660.70803	23939.199111	18.115088	0.000000*	23296.898504	18.614525	0.000000*	
REVERSETIMEO	-4103.044006	541.842492	-7.572392	0.000000*	542.981524	-7.556508	0.000000*	1.009788
BEDPLUSBATHC	15804.615233	6779.090481	2.331377	0.020849*	7114.500332	2.221465	0.027577*	3.618845
MAINSTRUCTUR	125.348087	15.500976	8.086464	0.000000*	15.897259	7.884887	0.000000*	3.640644
RCNOTHERTREN	0.662750	0.198789	3.333934	0.001053*	0.186988	3.544353	0.000514*	1.020220

OLS Diagnostics

Input Features:	CerritosNorth
Number of Observations:	182
Multiple R-Squared [d]:	0.712009
Joint F-Statistic [e]:	109.400420
Joint Wald Statistic [e]:	479.504600
Koenker (BP) Statistic [f]:	6.459220
Jarque-Bera Statistic [g]:	5.228495

Dependent Variable:	SUGGESTEDPRICE
Akaike's Information Criterion (AICc) [d]:	4459.413599
Adjusted R-Squared [d]:	0.705500
Prob(>F), (4,177) degrees of freedom:	0.00000*
Prob(>chi-squared), (4) degrees of freedom:	0.00000*
Prob(>chi-squared), (4) degrees of freedom:	0.167378
Prob(>chi-squared), (2) degrees of freedom:	0.073223

ArcGIS Pro Analysis Tools:

- Exploratory Regression
- Clustering & Hot Spot
 OLS (MRA)
- 💼 Moran's I

📫 GWR

Huntington

Choose 4 of 22 Summary

Highest Adjusted R-Squared Results

AdjR2	AICc	JB	K(BP)	VIF	SA	Model				
0.79	3755.78	0.00	0.00	3.94	0.00	-REVERSETIN	IEOFSALE***	+LOTSIZEGIS**	+MAINSTRUCTURESQFT***	+RCNTOTAL***
0.78	3758.94	0.00	0.00	3.93	0.00	-REVERSETIN	IEOFSALE***	+LOTSIZEUSEABLE	E** +MAINSTRUCTURESQFT*	*** +RCNTOTAL***
0.78	3761.06	0.01	0.00	4.20	0.00	-REVERSETIN	IEOFSALE***	+LOTSIZEGIS***	+MAINSTRUCTURESQFT***	+RCNMAINSTRUCTURE***
								Passing Model	ls	
AdjR2	AICc		JB		K(BP)	VIF	SA	Model		
0.6875	582 3808	.57613	35 0.1	10114	0.0047	30 4.639329	0.110412	+LOTSIZEUSEABLE*	*** +QUALITYCLASSNUMBER	<pre></pre>

Summary of OLS Results - Model Variables

Variable	Coefficient [a]	StdError	t-Statistic	Probability [b]	Robust_SE	Robust_t	Robust_Pr [b]	VIF [c]
Intercept	433660.70803	23939.199111	18.115088	0.000000*	23296.898504	18.614525	0.000000*	
REVERSETIMEO	-4103.044006	541.842492	-7.572392	0.000000*	542.981524	-7.556508	0.000000*	1.009788
BEDPLUSBATHC	15804.615233	6779.090481	2.331377	0.020849*	7114.500332	2.221465	0.027577*	3.618845
MAINSTRUCTUR	125.348087	15.500976	8.086464	0.000000*	15.897259	7.884887	0.000000*	3.640644
RCNOTHERTREN	0.662750	0.198789	3.333934	0.001053*	0.186988	3.544353	0.000514*	1.020220

OLS Diagnostics

Input Features:	CerritosNorth
Number of Observations:	182
Multiple R-Squared [d]:	0.712009
Joint F-Statistic [e]:	109.400420
Joint Wald Statistic [e]:	479.504600
Koenker (BP) Statistic [f]:	6.459220
Jarque-Bera Statistic [g]:	5.228495

Dependent Variable:	SUGGESTEDPRICE
Akaike's Information Criterion (AICc) [d]:	4459.413599
Adjusted R-Squared [d]:	0.705500
Prob(>F), (4,177) degrees of freedom:	0.000000*
Prob(>chi-squared), (4) degrees of freedom:	0.000000*
Prob(>chi-squared), (4) degrees of freedom:	0.167378
Prob(>chi-squared), (2) degrees of freedom:	0.073223

Sample Neighborhoods

Property Characteristics

Sales from 2016 & 2017 ≈ **<u>100,000</u>** sales.

#	Field Name		
1	AIN	13	Quality Class Number
2	Sale Price	14	Central Air
3	Reverse Time of Sale	15	Pool
4	Lot Size	16	Has View
5	Lot Size Useable	17	Has Nuisance
6	Lot Size Excess	18	RCN Main Structure
7	Main Structure SqFt	19	RCN Other Structures
8	Bedroom Count	20	Total RCN
9	Bathroom Count	21	Total RCNLD
10	Room Count	22	LocationID
11	Age	23	X/Y Point

12 Effective Age

Five GWR Models Selected

Model #	1	2	3	4	5
Area	Phillips Ranch	Monterey Hills	South Pasadena	Cerritos	Palos Verdes
V1	ReverseTimeOfSale	ReverseTimeOfSale	ReverseTimeOfSale	ReverseTimeOfSale	ReverseTimeOfSale
V2	LotSizeUseable	LotSizeGIS	LotSizeUseable	MainStructureSqFT	LotSizeGIS
V3	Age	LotSizeExcess	EffectiveAge	RCNOtherTrended	Age
V4	MainStructureSqFt	Age	MainStructureSqFt	BedPlusBathCount	RCNLDMainStructure
V5	HasPool	MainStructureSqFt	RCNTotal		RCNLDOtherStructure
V6		RCNTotal			
# Samples	169	110	135	182	194
OLS AIC/R2	4169 / .749	3039 / .661	3760 / .782	4459 / .705	5225 / .717
GWR AIC/R2	4170 / .748	3036 / .673	3736 / .834	4443 / .741	5210 / .748

1. Identify GWR Models & Create AVM Process: Using multiple attribute models.

- 2. Control Sample Population (by Boundaries)
- 3. Identify Best Valuations (Results)
- 4. Store & Process Data (Workflow)
- 5. Consider Software & Scalability (Cloud & ML)

3036 / .673

3736 / .834

GWR AIC/R2

4170 / .748

5

Palos Verdes

ReverseTimeOfSale

RCNLDMainStructure

RCNLDOtherStructure

194

5225 / .717

5210 / .748

otSizeGIS

4443 / .741

1. Identify GWR Models & Create AVM Process: Using multiple attribute models.

2. Control Sample Population (by Boundaries): Filter & Loop

- 3. Identify Best Valuations (Results)
- 4. Store & Process Data (Workflow)
- 5. Consider Software & Scalability

Boundary Choices

School Districts
 Assessor Clusters
 Communities
 No Boundaries
 Others....??

- 1. Identify GWR Models & Create AVM Process: Using multiple attribute models.
- 2. Control Sample Population (by Boundaries): Filter & Loop

3. Identify Best Valuations (Results): For each home in the population.

- 4. Store & Process Data (Workflow)
- 5. Consider Software & Scalability

Select Best of 5 Valuations (Best?)

First Cut:

1. R2 > =.70 AND Variance <= .05

Second Cut (in order):

- 1. Lowest AIC Score (+-3)
- 2. Highest R2
- 3. Lowest Variance

- 1. Identify GWR Models & Create AVM Process: Using multiple attribute models.
- 2. Control Sample Population (by Boundaries): Filter & Loop
- 3. Identify Best Valuations (Results): For each home in the population.

4. Store & Process Data (Workflow)

5. Consider Software & Scalability (Cloud & ML)

- 1. Storage: SQL Server database
- 2. Statistical Process: R using spgwr package
- 3. Other Processes: T-SQL & Stored Procedures
- 4. Scheduling & Automation: SQL Server Agent
- 5. Scalability: Repeated in Azure Cloud

Sample Results & Work Needed

Work Needed

- Add Test Scenarios & Clean-Up Workflow
- Compare Results to Existing Process
- Analyze/Improve Boundaries
- Data Quality, Cleansing, & Collection Standards
- Comparable Sales Validation Process
- Guestimate -> Prediction -> IAAO standards

Good Value Estimate R2 >= .70 AND Variance <= .05 Poor Value Estimate

Neutral Value Estimate Everything else

R2 <= .50 AND Variance >= .15 Every