Using GIS to Target Road Management in the Lake Tahoe Basin

ESRI International User Conference

July 8-12, 2019

Ina Sue Miller¹, William J. Elliot² and Longxi Cao³

¹USDA Forest Service,

Rocky Mountain Research Station, Moscow, Idaho

²Scientist Emeritus USDA Forest Service

³Institute of Soil Science,

Chinese Academy of Sciences, Nanjing, China

USFS Lake Tahoe Management Unit

BLM Southern Nevada Public Land Management Act (SNPLMA)

Approach

- Motivation
- Methods
- Model results
- Limitations

Motivation

Sand H

Glenbroo

Stateline

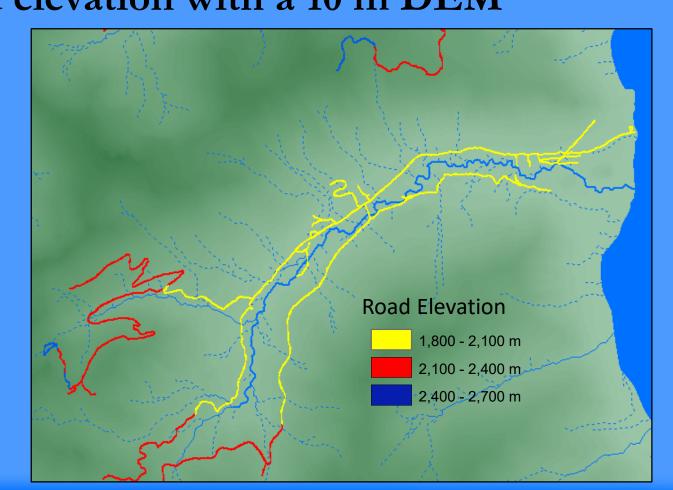
South Lake Tahoe Indian Hil

Fahce City

ahoë Pines

omewood

Tahoma


• Preservation – low impact watershed restoration projects.

Motivation

- Preservation low impact watershed restoration projects.
- Roads limiting sources of sediment

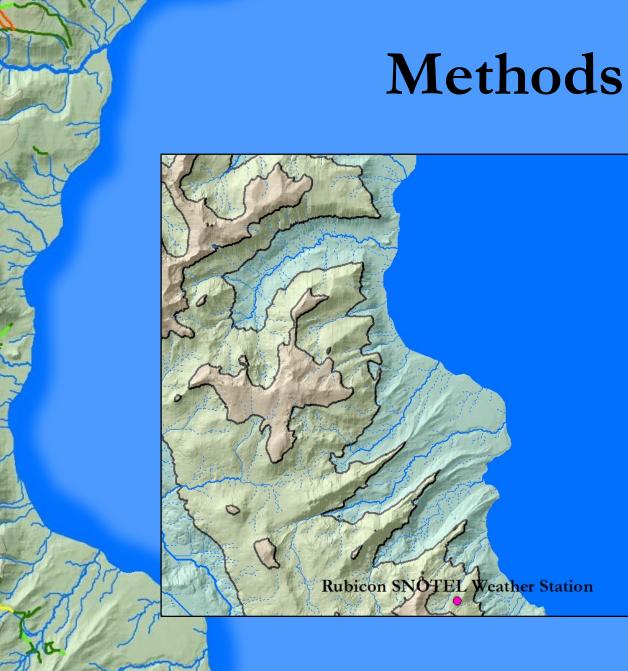
Analysis method developed by Longxi Cao Extraction of the road elevation with a 10 m DEM

Extract by Mask —		×
Input raster		~
MosaicDEM10m.tiff	-	6
Input raster or feature mask data LakeTahoeWestShoreRoads	•	
Output raster C:\tmp\RdsExtc		
<		>
OK Cancel Environments	Show H	elp >>

- Analysis method developed by Longxi Cao
 - Extraction of the road elevation with a 10 m DEM
 - Determine high and low elevation points along road and split at points

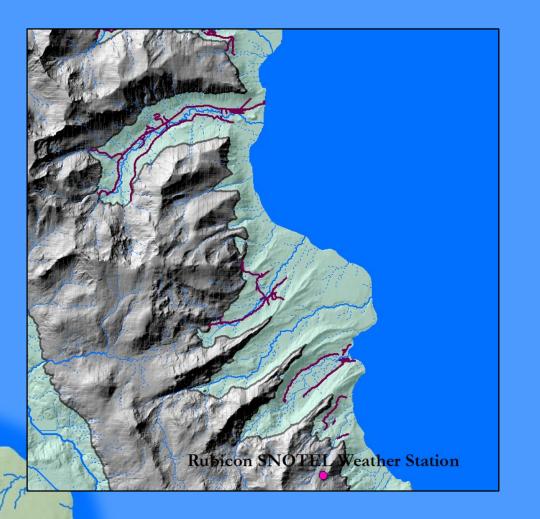
🔨 Focal Sta	tistics		-		>	<
Input raster	r				_	,
Extr_Rd-e	lev			•	6	
Output rast	er					
C:\tmp\Fo	lstMax				6	
Neighborho	od (optional)					
Rectangle		\sim				
Neighborh	nood Settings					
Height:	5					
Width:	5					
Units:	• Ce	ell	🔿 Мар			
	pe (optional)					
MAXIMUM					\sim	
✓ Ignore I	NoData in calcu	lations (opti	onal)			١
<					>	
ОК	Cancel	Environm	nents	Show H	lelp >>	

≪ Split Line at Point -	
Input Features	
LakeTahoeWestShoreRoads	- 🖻
Point Features	
FeaToPt_Rd_Intersect_point4	- 2
Output Feature Class	
C:\tmp\Rds_Splt_Pt.shp	
Search Radius (optional)	
0.1 Meters	\sim
	×
<	>
OK Cancel Environments	Show Help >>



- Analysis method developed by Longxi Cao
 - Extraction of the road elevation with a 10 m DEM
 - Determine high and low elevation points along road and split at points
 - Calculate road segment length, and slope gradient
- 1360 road segments
- Average length ≈ 133 m
- Road grade ≈ 5.4%

×≣	5.	C . 1	÷			seg_ele	v.xlsx - Exce	el			?	函 _ 0	×
FI	FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Cao, Longxi - FS - Cao												
	External Rei	fresh	onnections operties lit Links ions	A↓ AA A↓ Sort	Filter	Clear Reapply Advanced	Text to	Flash Fill Remove Du Data Valida Data Tools	ntion • 🔤	Outline	🗄 Data Ana Analysis	ilysis	~
R2		•	× v	$f_x = Q_2$	/N2*100								~
1	G	Н	Ι	J	к	L	М	N	0	Р	Q	R	
1	GISMiles	HaulRout	e RdWork_	R FCSUBTYP	OBJECTID	length_km	n code	length_m	ORIG_FID	RASTERVAL	elev-differ	SLOPE	
2	#########			518	0	1.17		1 106.126	0	1159.37	5.747559	5.415787	
3	########			518	0	1.17	l .	1 88.829	1	1153.62	1.322632	1.488964	
4	########			518	0	1.17		1 72.011	2	1152.30	6.133179	8.517003	
5	########			518	0	1.17		1 243.380	3	1146.17	15.27515	6.276254	
6	########			518	0	1.17	1	1 134.865	4	1112.55	0.65625	0.486598	
7	#########			518	0	1.17		1 61.478	5	1113.20	4.373535	7.113984	
8	#########			518	0	1.17		1 65.157	6	1115.29	2.743408	4.210458	
9	########			518	0	1.17	1	1 66.657	7	1108.83	1.128418	1.692872	
10	##########		-	518	0	1 17		1 58 03/	R	1116 05	1 656006	2 800033	•
3	E F	seg_elev	Sheet1	Sheet2	\oplus			1 4					F
REAL	DY								Ħ			-+ 1	100%


- Analysis method developed by Longxi Cao
 - Extraction of the road elevation with a 10 m DEM
 - Determine high and low elevation points along road and split at points
 - Calculate road segment length, and slope gradient
 - Determine flow length from roads to streams = road
 buffer
 Flow Length
 □ ×

Flow Length	_			×
Input flow direction raster				^
FlowDir_Invt		•	6	
Output raster				
C:\tmp\FlowlenInv			B	
Direction of measurement (optional) DOWNSTREAM			~	
Input weight raster (optional)				
		-	2	
				×
<			>	
OK Cancel Environments.		Show I	Help >:	>

Using PRISM and Rubicon Snow Tel weather records, define climate layers.

• 300 meter division

Using PRISM and Rubicon Snow Tel weather records, define climate layers.

• 300 meter division

• 1800-2100 m

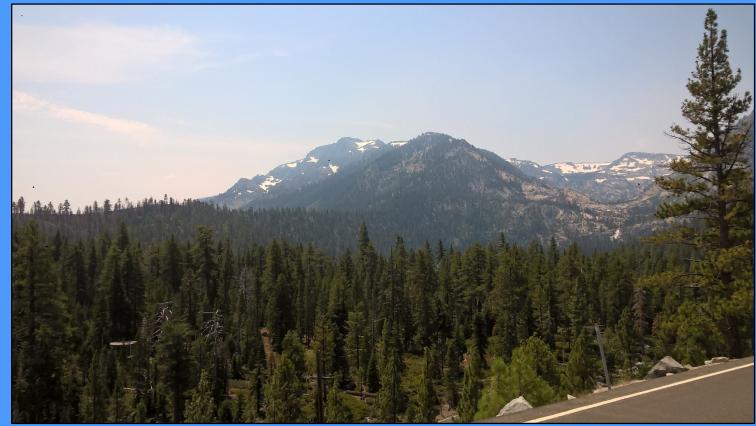
Using PRISM and Rubicon Snow Tel weather records, define climate layers.

- 300 meter division
- 1800-2100 m
- 2100-2400 m

Using PRISM and **Rubicon Snow Tel weather** records, define climate layers.

- 300 meter division
- 1800-2100 m
- 2100-2400 m
- 2400-2700 m

Develop cross-walk between Lake Tahoe West (LTW) design and database categories


LTW Designation	Design	Surface (default if not specified)	Traffic	Road width	Rk Frag	Tahoe Current Maintenance Levels"
Not maintained	OU	Native surface	no	12	rock 20%	0 - hold over - ignore
Basic custodial care (closed)	OU	Native surface	no	12	rock 20%	1-These are roads that have been placed in storage between intermittent uses.
High clearance vehicles	OU	Native surface	low	12	rock 20%	2 - Assigned to roads open for use by high clearance vehicles. ped - out sloped - 4x4 road
Suitable for passenger cars	OU	Native surface	low	18	rock 20%	3 - Assigned to roads open and maintained for travel by a prudent driver in a standard passenger car.
Moderate degree of user comfort	OU	paved	high	24	na	4 - Assigned to roads that provide a moderate degree of user comfort and convenience at moderate travel speeds.
High degree of user comfort	OU	paved	high	24	na	5 - Assigned to roads that provide a high degree of user comfort and convenience.
Decommissioned roads**						may use as future logging road
		Bituminous				4 - Assigned to roads that provide a moderate degree of user comfort and convenience at moderate travel speeds.
		Improved native mat	erial			Graveled road - assigned to Levels 1 through 3 above.
Road lengths are at approx 140 m						

FS WEPP Road Batch https://forest.moscowfsl.wsu.edu/fswepp/

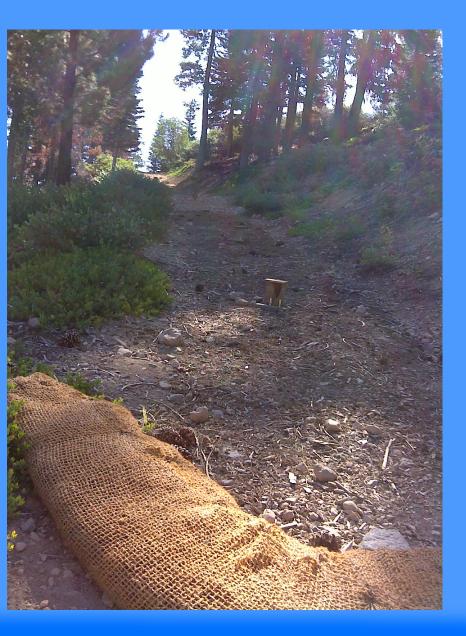
Forest Service WEPP Interfaces WEPP:Road WEPP:Road Batch 218 runs, 12333 segments YTD 2083 runs YTD ERMIT 39579 runs YTD 88 runs YTD Disturbed WEPP Disturbed WEPP batch (download) 30105 runs YTD 90 runs YTD **Tahoe Basin Sediment Model Biomass Sediment Model** 189 runs YTD 8 runs YTD FuME (Fuel Management) Rock:Clime 64 runs YTD WEPP Watershed Online GIS **Peak Flow Calculator** Lake Tahoe WEPP Watershed GIS Interface WEPP Post-Fire Erosion Prediction (PEP) Units: Ometric OU.S. customary personality (a to z)

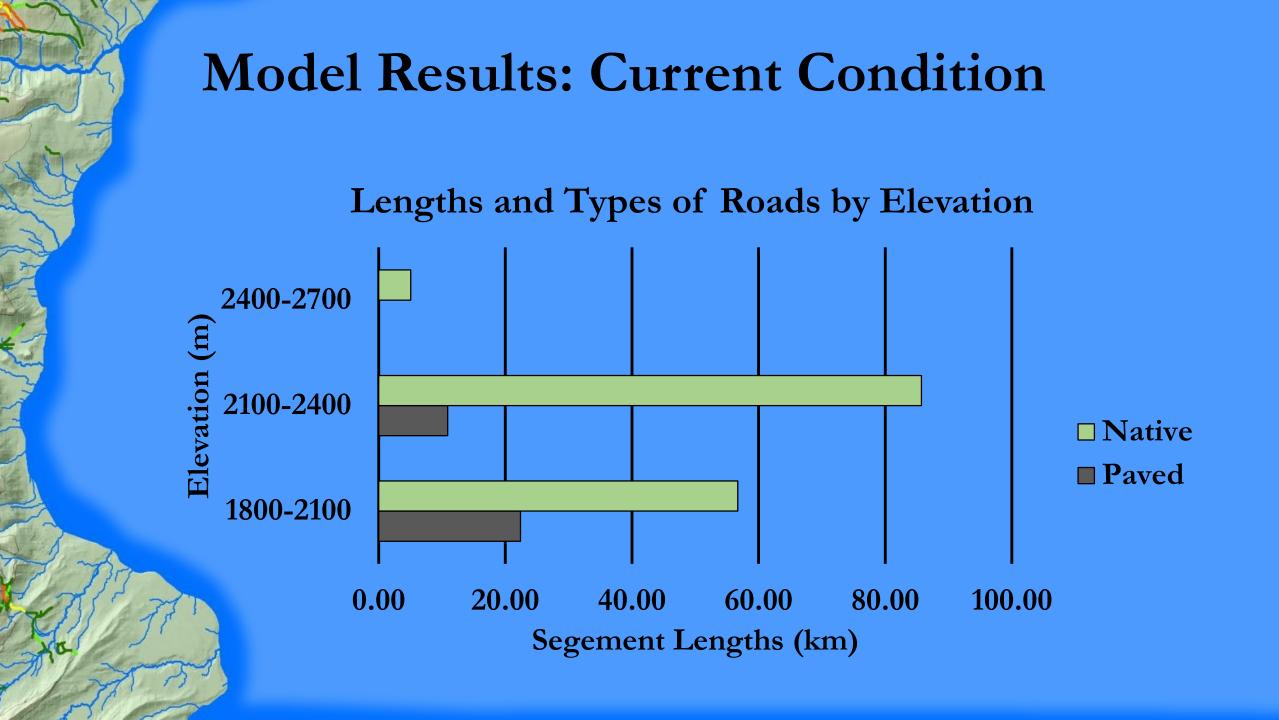
Three scenarios:

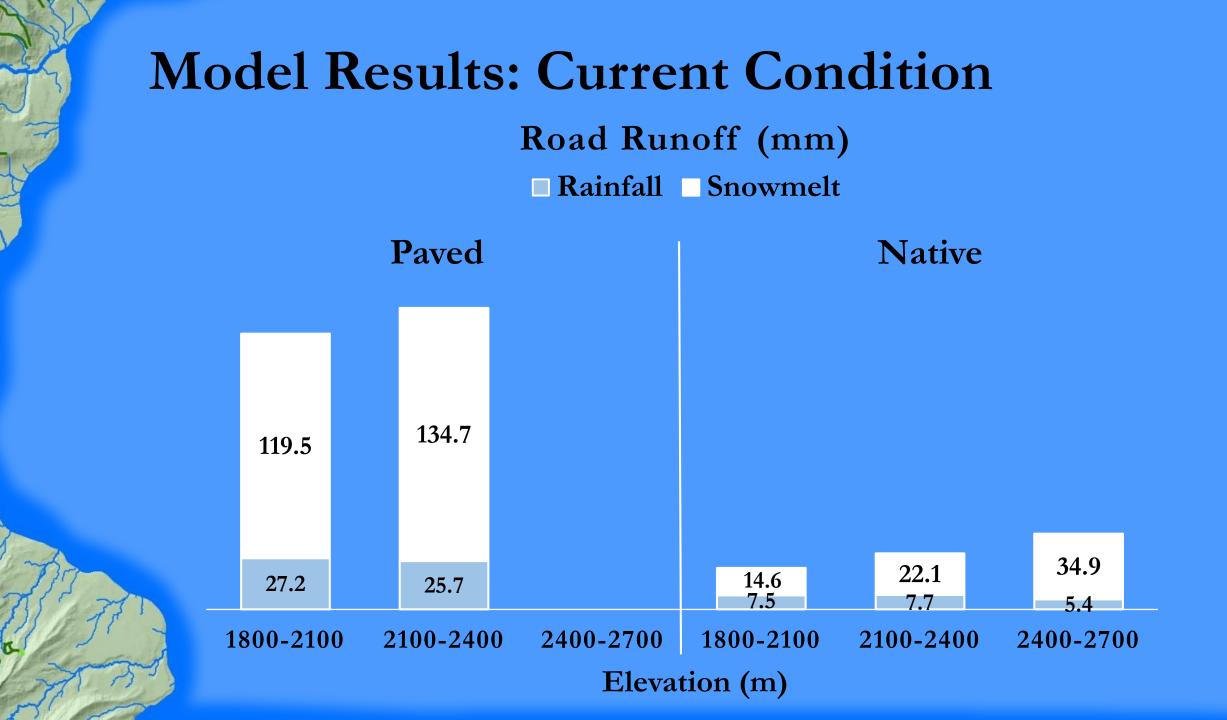
• Current Conditions

Three scenarios:

- Current Conditions
- Logged = high traffic

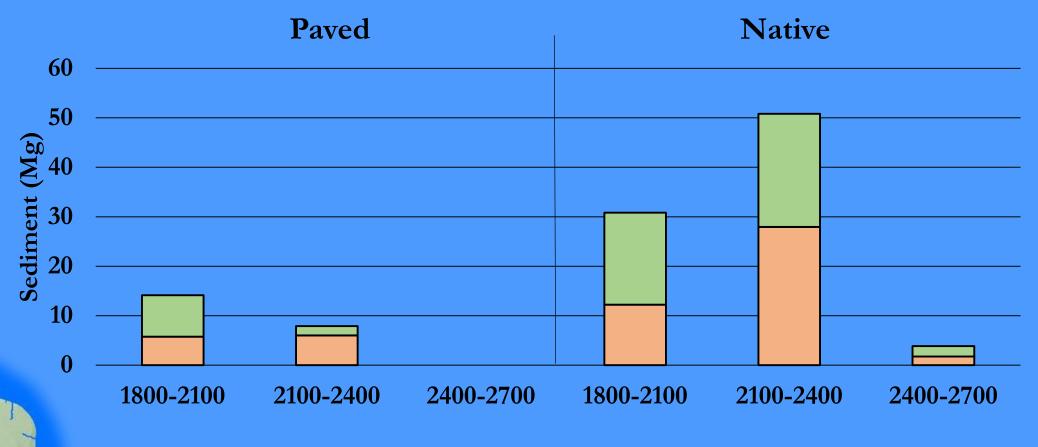



Three scenarios:


- Current Conditions
- Logged = high traffic

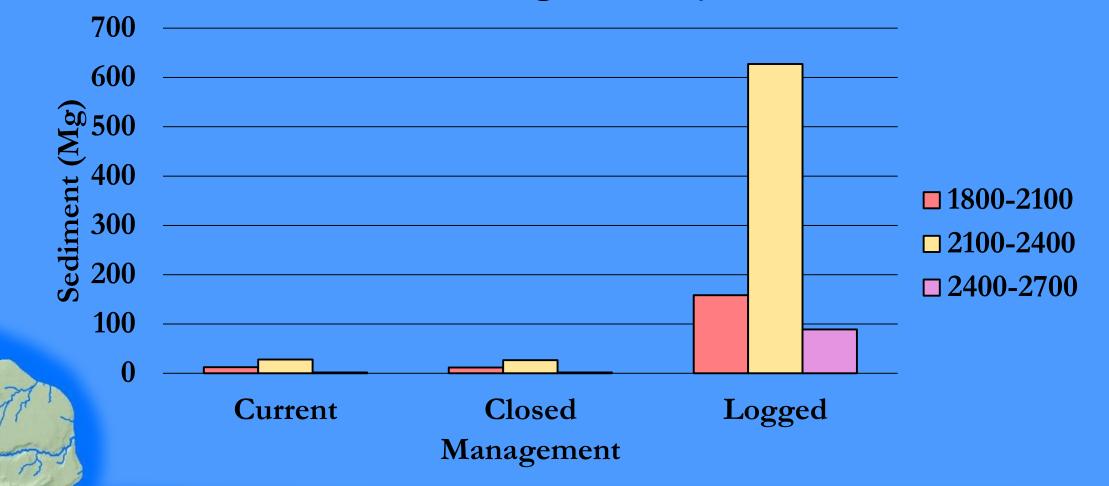
Methods

• Closed = no traffic

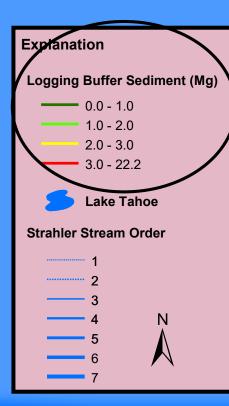


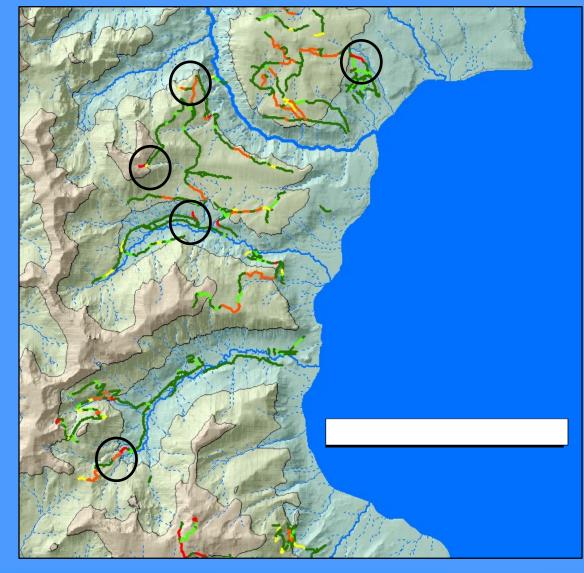
Model Results: Current Condition

Sediment Deposition and Delivery by Elevation


□ Delivery □ Deposition

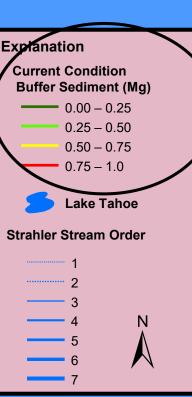
Elevation Range (m)

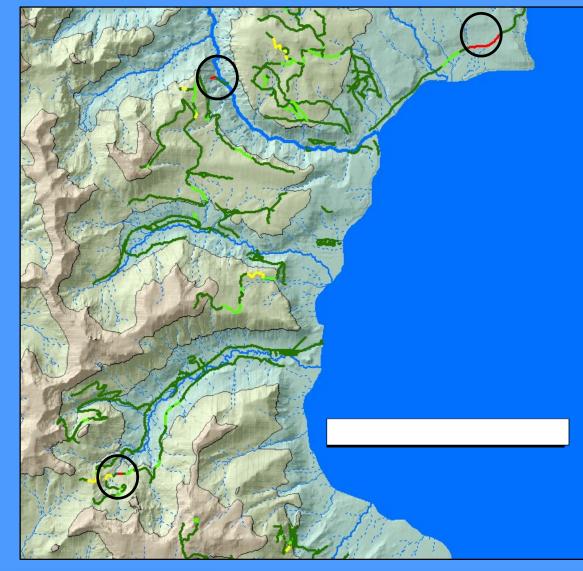

Model Results


Sediment Leaving Buffer by Scenario

2019 West Shore Lake Tahoe Road Sediment Analysis

Logging: Sediment reaching the channel



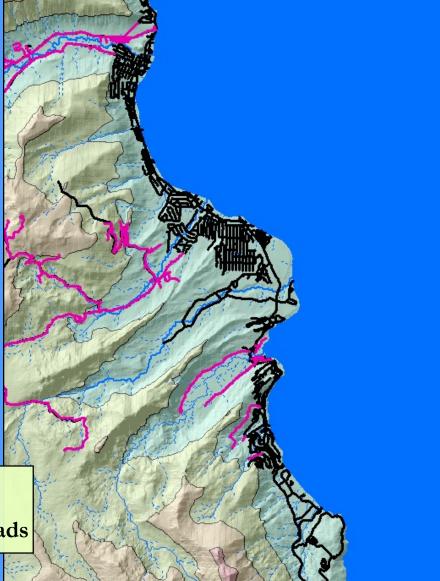


2019 West Shore Lake Tahoe Road Sediment Analysis

Current Conditions: Sediment reaching the channel

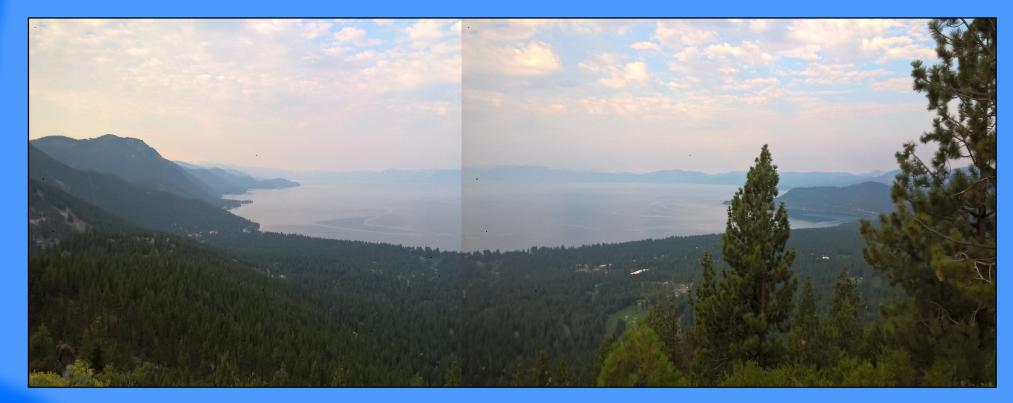
<u>Note</u> the much lower sediment values

Limitations


- Over prediction of sediment erosion? WEPP:Road soils are subject to erode more than Tahoe Soils
 - Foltz et al., 2011 suggest maybe 5 times as much
- Current sediment management practices were not considered in analysis

Limitations

- Over prediction of sediment erosion? WEPP:Road soils are subject to erode more than Tahoe Soils
 - Foltz et al., 2011 suggest maybe 5 times as much
- Current sediment management practices were not considered in analysis
- Roads layer did not include all roads


— Roads modeled

All Lake Tahoe roads

• https://forest.moscowfsl.wsu.edu/fswepp/

sue.miller3@usda.gov

USFS Lake Tahoe Management Unit

BLM Southern Nevada Public Land Management Act (SNPLMA)