
Wolf Kaiser

ArcGIS Pro SDK for .NET:
Plugin Datasources, Deep Dive

Session Overview

• Plugin Datasources: Introduction and Architecture
• Sample of a Plugin Datasource
• Implementing a Plugin Datasource

- Plugin Datasource template classes
• Supporting Queries (where clause) in a Plugin Datasource
• Combining Plugin Datasources with ‘Custom Project Item’
functionality

Plugin Datasources: Introduction

• ArcGIS Pro supports spatial and tabular data from many data sources
and formats:
- File based data such as Shape File, File Geodatabase, etc.
- Relational databases like Oracle, SQL Server, IBM DB2, etc.
- Web based services like ArcGIS Server, OGC Web services

• But many other formats are not supported
• The “ArcGIS Pro Plugin DataSource” extensibility pattern is used to

integrate those unsupported formats like:
- Unsupported relational databases such as MySQL
- Non-relational databases such as MongoDB
- Many other proprietary or obscure file-based data stores or web services

Plugin Datasources: Introduction

• With the Plugin Datasource framework you can:
- Show custom data as a feature class or as a standalone table

- Features and rows are supported
- Consume any format and data source (file, database, web)

• Plugin Datasource limitations
- Access in Pro is read-only
- Access is in form of tables or feature classes
- Access is always defined by a file or folder so either:

- My custom data source is a file or a folder
- My ‘connection definition’ to my custom datasource is in a file (i.e. .sde file)

Examples of Custom data source used in Community Samples

• Jpg photos with GPS metadata
- Smart phones and digital cameras have the option to capture GPS

information when a photo is taken
• Gpx File data

- GPX (the GPS eXchange Format) is a data format for exchanging GPS
data between programs and implemented by many GPS tracking devices

• SQL Server Express
- An example of a free relational database that contains data copied

from classic personal geodatabases

Custom data source used In this session:
SQL Server Express – custom data source

• Instead of creating my own spatial format and data,
I copied data from an old ArcMap Personal GDB
(Access DB) into my SQLExpress database.

• ArcMap Personal GDBs cannot be directly viewed
using Pro, they can only be converted.

• How was this custom data source created?
- Copied all data tables (containing features and rows) from

the Access Database to SQL Express
- Copied these tables to provide metadata (such as spatial

columns, spatial reference, default extent):
GDB_GeomColumns, GDB_Items,
GDB_SpatialRefs

Demo: Custom (Sql
Server Express)
Database Plugin
Datasource & Project
Item

Plugin Datasources: Architecture

Plugin Datasources: Architecture

• ArcGIS Pro Geodatabase functionality is based on the same
architecture as the Plugin Datasource Architecture
- For example: client-server geodatabase such as Oracle, SQL Server, or Postgres.

• How are Plugin Datasources supported by the Pro API?
- See ArcGIS.Core.Data.PluginDatastore namespace

• The API provides the following template classes:
- PluginDatasourceTemplate, PluginTableTemplate, and PluginCursorTemplate
- Implement your custom data source by creating classes that inherit from these

template classes

• And a set of supporting classes such as:
- PluginDatasourceConnectionPath, PluginDatastore, PluginField, and PluginRow

Implementing plugin datasource for your custom data

• Use the ‘ArcGIS Pro Plugin’ Project Template
- Stubs out all code for you

• Creates three concrete classes that inherit from these API template classes
- PluginDatasourceTemplate

- Used to manage one or more tables or feature classes
- PluginTableTemplate

- Can be queried and return a cursor
- PluginCursorTemplate

- Data Rows are returned by iterating using a cursor

• Update config.daml to register your Plugin Datasource with Pro with the id attribute

<ArcGISPro>
<PluginDatasources>
<PluginDatasource id="ProSqlPluginDatasource" class="ProSqlPluginDatasourceTemplate" />

</PluginDatasources>
</ArcGISPro>

Using a custom plugin datasource in ArcGIS Pro

• How can I use a Custom Plugin Datasource from an Add-in:
- Create a PluginDatasourceConnectionPath object, which inherits from the

Connector base class
- Create a PluginDatastore object using the connector. PluginDatastore inherits

from the Datastore base class
- Open a Table or FeatureClass using the OpenTable() method on the datastore
- Using the Table or FeatureClass I can then
- 1. Extract the data in code by:

- Using the Search or Select methods to get a RowCursor
- Iterate through the cursor using MoveNext() and Current, which returns a Row

- 2. Use the Table or FeatureClass in ArcGIS Pro:
- - Using LayerFactory to add a FeatureClass to a Map
- - Using StandaloneTableFactory to add a StandaloneTable to a Map

Using a custom plugin datasource in ArcGIS Pro
• Define a connection to a data source instance for an Add-in

- Use PluginDatasourceConnectionPath with the PluginDataSource id and the path to
the data source file

• Use the connection to create a datastore to your data source instance
• Use the datastore to access tables and feature classes

var pluginId = @"ProSqlExpressPluginDatasource";
var filePathUri = new Uri(@"C:\Data\PluginData\SQLExpressData\SqlExpress.sqlexpress\\\FdTestSqlExpress");
var conSql = new PluginDatasourceConnectionPath(pluginId, filePathUri);
QueuedTask.Run(() =>
{

using (var pluginSql = new PluginDatastore(conSql))
foreach (var tableName in pluginSql.GetTableNames())

using (var tbl = pluginSql.OpenTable(tableName))
if (tbl is FeatureClass fc)
{

//Add as a layer to the active map or scene
LayerFactory.Instance.CreateFeatureLayer(fc, MapView.Active.Map);

}
});

Demo: Plugin
DataSource
Template
& Addin using the
DataSource

“Plugin DataSource Project Template”: Implement Custom Data Access

• Insert your Implementation into the ‘stubbed out’ code of the Project
Template for:
- PluginDatasourceTemplate
- PluginTableTemplate
- PluginCursorTemplate

• To navigate required
Updates use Visual Studio
Task List

Implementing the Plugin Datasource

• PluginDatasourceTemplate
- public override bool IsQueryLanguageSupported()

- Return false: The framework filters out rows
- The framework doesn’t relay the user-provided ‘where clause’ to PluginTable.Search()

- public override void Open(Uri connectionPath)
- Access starts file based, so the connectionPath parameter is either a file or folder
- Sample Uri:
- file:///C:/Data/PluginData/SQLExpressData/SqlExpress.sqlexpress///FdTestSqlExpress
- Using ‘///’ to separate the connection file path (.sqlexpress) and the database name

- Extract the connection properties and connect to the SqlExpress database

Implementing the Plugin Datasource

• PluginDatasourceTemplate
- public override IReadOnlyList<string> GetTableNames()

- Using the ‘SqlExpress database’ connection return the list of spatial and non-spatial table
names

- The Plugin Datasource client can use the GetTablesNames to iterate all table names

- public override PluginTableTemplate OpenTable(string tablePath)
- tablePath is the name of the table including any dataset paths
- Sample tablePath: \USA\cities
- Create and return a ProSqlPluginTableTemplate with SqlExpress connection and the table

path as parameters

Implementing the Plugin Datasource

• PluginTableTemplate (Created with SqlExpress connection, table name)
- public override IReadOnlyList<PluginField> GetFields()

- Using the SqlExpress connection and table name create a PlugInField list
- Each PluginField has

- Name (string)
- AliasName (string)
- FieldType (FieldType) which contains the datatype for this field

- For all tables set one primary key numeric field as FieldType.OID FieldType
- For spatial tables your shape field has to have a ‘FieldType.Geometry’ FieldType

- public override GeometryType GetShapeType()
- Non-spatial tables return a ‘GeometryType.Unknown’ Geometry type
- Spatial tables return the appropriate GeometryType

- Example: GeometryType.Point

- Define the appropriate SpatialReference

Implementing a Plugin Datasource

• PluginTableTemplate
- public override Envelope GetExtent()

- Return the spatial extent as an Envelope, using the defined SpatialReference

- public override PluginCursorTemplate Search(QueryFilter queryFilter)
- public override PluginCursorTemplate Search(SpatialQueryFilter spatialQueryFilter)

- Pro Framework calls Search with a queryFilter without any where clauses or spatial filters
because IsQueryLanguageSupported() returns false

- Read all records from the SQLExpress table into a DataTable
- Create a list of all FieldType.OID values to be used by the cursor
- Create and return a ProSqlPluginCursorTemplate instance
- ProSqlPluginCursorTemplate needs the query filter, data table, list of FieldType.OIDs, and

the spatial reference (from queryFilter param)

Implementing a Plugin Datasource

• PluginCursorTemplate
- public override PluginRow GetCurrentRow()

- Convert the internal row (from DataTable.Rows) to the PluginRow class format
- Note: the geometry value might have to be reprojected using

GeometryEngine.Instance.Project
- Return the PluginRow

- public override bool MoveNext()
- The list of all FieldType.OID values is used to advance the cursor to the next

position
- MoveNext () is called to get to the first record and to advance the cursor to the

next position
- Returns false if no records are left to return, true if the cursor was positioned

over another record.

Supporting Queries (where clause) in a Plugin Datasource

• PluginDatasourceTemplate
- public override bool IsQueryLanguageSupported()

- Return true, the Pro framework passes a where clause into Table.Search() which
passes it directly to PluginTable.Search() (both spatial and non-spatial queries)

• PluginTableTemplate
- public override PluginCursorTemplate Search(QueryFilter queryFilter)
- public override PluginCursorTemplate Search(SpatialQueryFilter spatialQueryFilter)

- Process any where clauses first (this includes the List of ObjectIds)
- DataTable supports where clauses and order by clauses … so no custom code here
- For spatial queries use where clause result to run a spatial filter on each shape

- Convert your ‘custom’ shape format into a valid Pro API Geometry first

- Return the List of ObjectIds (in the cursor) for all records matching the query filter

Supporting Queries (where clause) in a Plugin Datasource

• Implementing a spatial filter to check each record’s geometry:
- Returns false: the record geometry doesn’t pass spatial filter requirements

internal static bool HasRelationship(Geometry geomSpatialFilter,
Geometry geomRecordToCheck,
SpatialRelationship relationship)

{
var engine = GeometryEngine.Instance;
switch (relationship)
{

case SpatialRelationship.Intersects:
return engine.Intersects(geomSpatialFilter, geomRecordToCheck);

case SpatialRelationship.IndexIntersects:
return engine.Intersects(geomSpatialFilter, geomRecordToCheck);

…..
case SpatialRelationship.Within:

return engine.Within(geomSpatialFilter, geomRecordToCheck);
}
return false;//unknown relationship

}

C:\Data\PluginData\SQLExpressData
\SqlExpress.sqlexpress

Demo: Plugin
DataSource Sample

Better integration of custom plugin datasource in ArcGIS Pro

• A better user experience is:
- Custom content is integrated both into the Pro

catalog and its browse experience

• Use the ‘Custom Project Item’ item template in
your Add-in
- Pairing a custom item with a plugin datasource allows

your custom content to be integrated into the Pro
catalog and open file dialog

• Use this sample implementation as a guide
• Use ProConcepts and ProGuide Custom Items

Demo: Plugin
DataSource Sample

Plugin Datasources, Deep Dive

• Session content
- Slides and Example code:
- https://github.com/esri/arcgis-pro-sdk/wiki/tech-sessions

https://github.com/esri/arcgis-pro-sdk/wiki/tech-sessions

	ArcGIS Pro SDK for .NET:�Plugin Datasources, Deep Dive
	Session Overview
	Plugin Datasources: Introduction
	Plugin Datasources: Introduction��
	Examples of Custom data source used in Community Samples
	Custom data source used In this session:�SQL Server Express – custom data source
	Demo: Custom (Sql Server Express) Database Plugin�Datasource & Project Item
	Plugin Datasources: Architecture
	Plugin Datasources: Architecture
	Implementing plugin datasource for your custom data
	Using a custom plugin datasource in ArcGIS Pro
	Using a custom plugin datasource in ArcGIS Pro
	Demo: Plugin DataSource Template�& Addin using the DataSource
	“Plugin DataSource Project Template”: Implement Custom Data Access
	Implementing the Plugin Datasource
	Implementing the Plugin Datasource
	Implementing the Plugin Datasource
	Implementing a Plugin Datasource
	Implementing a Plugin Datasource
	Supporting Queries (where clause) in a Plugin Datasource
	Supporting Queries (where clause) in a Plugin Datasource
	Demo: Plugin DataSource Sample
	Better integration of custom plugin datasource in ArcGIS Pro
	Demo: Plugin DataSource Sample
	Plugin Datasources, Deep Dive

