
32 au  Summer 2011  esri.com

Migrating Widgets to the
ArcGIS Viewer for Flex
Some tips and tricks to ease the process
By Robert Scheitlin, Calhoun County; and Bjorn Svensson and Derek Law, Esri

This article tells developers how to migrate widgets developed

with the Sample Flex Viewer (SFV) to the ArcGIS Viewer for

Flex. It assumes readers have experience using the ArcGIS API

for Flex and are familiar with the Adobe Flash development

environment, and experience developing with the Flex API and

Adobe Flash is strongly recommended.

	 Released in November 2008, the SFV was a developer sample built on the ArcGIS API for
Flex. It enabled nonprogrammers to deploy a rich Internet application for ArcGIS Server with
minimal effort. Since its release, the SFV has been downloaded more than 30,500 times, and
many sites have been built on the SFV.
	 SFV also provided a framework for Flex API developers to customize and extend the
viewer. One important area was the ability to create custom widgets. Widgets are modular
pieces of code that extend or add to the functionality of the SFV. They can be tailored by the
widget developer for specific tasks that require particular data and conditions to be present
in the viewer, or they can be generic and allow SFV to be configured by nonprogrammers to
work with their own data. More than 50 widgets have been created for SFV and shared on the
ArcGIS API for Flex code gallery. Many of these widgets can still be accessed from the Esri
ArcScripts site (arcscripts.esri.com/; search for “flex” AND “viewer”).
	 In September 2010, Esri released the ArcGIS Viewer for Flex—the official product release
of the SFV. It includes 20 core widgets that support many standard web mapping application
functionalities.
	 Many users wondered about the SFV widgets that were produced and shared on the
ArcGIS API for Flex code gallery. Would these widgets “just work” in the new ArcGIS Viewer
for Flex application?
	 Unfortunately, the answer is no. The ArcGIS Viewer for Flex uses a framework that differs
from SFV. It is based on a newer release of the ArcGIS API for Flex and utilizes the latest
Adobe Flash technology. To use widgets previously developed for the SFV, the code base for
those widgets must be migrated and recompiled for the new ArcGIS Viewer for Flex 2.x API
libraries.

P   Do this

   Copy this

G   Note this

M   Avoid this

<   Good practice

N   Don’t do this

 This Dynamic Legend widget created by
Robert Scheitlin modifies the contents of
the legend based on scale dependency
and layer visibility. Map services and/or
specific layers in a map service may also be
excluded from the legend.

33esri.com  Summer 2011  au

	 This article provides tips and recommended practices to help Flex developers easily mi-
grate custom widgets from the SFV to the ArcGIS Viewer for Flex. Flex developers should be
aware of the differences between the SFV and the ArcGIS Viewer for Flex. These differences
are summarized in Table 1.

Sample Flex Viewer ArcGIS Viewer for Flex
Uses Adobe Flex SDK v3
ViewStack
mx:Text
mx:HBox
mx:ComboBox

Uses Adobe Flex SDK v4
States
s:Label
s:VGroup
s:DropdownList

Based on ArcGIS API for Flex 1.x
symbol package
com.esri.ags.tasks.Query
com.esri.ags.tasks.FeatureSet

Based on ArcGIS API for Flex 2.x
symbols package
com.esri.ags.tasks.supportClasses.Query
com.esri.ags.FeatureSet

Framework
WidgetEffects
com.esri.solutions.flexviewer.SiteContainer
BaseWidget

Framework
viewer:transitions
com.esri.viewer.ViewerContainer
viewer:BaseWidget

 Table 1: ArcGIS Viewer for Flex equivalents for SFV

	 Table 1 highlights some of the subtle—but key—changes in development patterns between the
SFV and the ArcGIS Viewer for Flex. The concepts are the same, even though they may have been
renamed. However, this is not a comprehensive list of these differences. At the Adobe software
development kit (SDK) level, Adobe recommends using the new Spark components. For example,
s:VGroup is used instead of mx:HBox. For more detailed information, see the resources list at the
end of this article.

Developer's Corner

 The Social Media widget created by Ping
Jiang searches YouTube for videos, Flickr for
photos, and Twitter for Tweets based on a
keyword.

34 au  Summer 2011  esri.com

General Tips on Widget Migration
P	Start the widget migration process with a new MXML Component. Create the

new MXML Component as part of a package in the widgets folder (i.e., widgets.
LiveLayer). Follow Viewer coding standards. The widget package should share
the same name as the widget name (minus the word “widget”). For example, the
full widget name and package would be widgets.LiveLayer.LiveLayerWidget.
Base the new MXML Component on BaseWidget.

N	Don’t give the new component a width or height; that is handled in the widget
template.

P	If the widget is going to reference custom components, such as item render-
ers and data groups (which are designed to replace the mx:Repeater in the
new Adobe Flex SDK 4 environment), add the widgets.xml name space to the
BaseWidget element (e.g., xmlns:livelayer="widgets.LiveLayer.*).

P	Use the widgetConfigLoaded event if the widget has a configuration file. This
ensures that the widget configuration file has been loaded before you try to use
it. Having a widget configuration file allows nondevelopers to change certain
aspects of the widget without altering the code and compiling the application.

P	An fx:Script block is needed for the ActionScript code that will be migrated from
an mx:Script block in the old widget. Add an fx:Script block by typing it in the
new widget file instead of just copying the mx:Script block from the old widget.

G	 States replace the ViewStacks used to separate pages or views in old widgets. A
little planning will go a long way here. Examine the old widget and determine
how many VBox elements are children of the ViewStack, that is, how many
states will be needed. Each state must have a name as shown in the example in
Listing 1.

35esri.com  Summer 2011  au

<viewer:states>
	 <s:State name=”filterResults”/>

	 <s:State name=”resultsList”/>

</viewer:states>

 Listing 1: Each state must have a name.

P	 In the old SFV, an animation that occurred when moving from one view to anoth-
er was handled by a custom ActionScript class called WidgetEffects. In the new
viewer, transitions are used for this purpose. The targets for transitions will be the
names of the states defined previously. An example is shown in Listing 2.

<viewer:transitions>

	 <s:Transition autoReverse=”true” toState=”*”>

		 <s:Fade targets=”{[filterResults, resultsList]}”/>

	 </s:Transition>

</viewer:transitions>

 Listing 2: Handle animations between views with transitions.

	 Copy the MXML elements that define the UI of the old widget, paste them into the new
widget, and comment them out. The commented old code can serve as a reference. This
will save some time because it eliminates the need to switch back and forth from old
widget code to new—both versions will be present.

	 Moving the widgets’ MXML code from mx components to Spark components during the
code migration is recommended. Use Table 1 to determine the Spark equivalents for some mx
components. The WidgetTemplate element is still the base for the widget’s UI. The new widget
template in the ArcGIS Viewer for Flex has renamed a few of the events. For example, the “widg-
etClosed” event is now just “closed” and the “widgetOpened” event is now “open.”
	 The height and width of a widget’s UI is defined in the widget template. Each widget state
will be a Spark group element, and each ID will share the same name as the states defined
earlier. Set the visibility of the group to false and add another attribute, “visible.” After the
attribute “visible” is typed, add a dot after it, and the automatic code completion will display
the available states (when using the Adobe Flash Builder IDE). Choose the state name of the
current group.

<viewer:WidgetTemplate id=”wTemplate”

			 width=”430” height=”240”

			 open=”widgetOpenedHandler(event)”

			 closed=”widgetClosedHandler(event)”

			 minimized=”widgetMinimizedHandler(event)”>

	 <s:Group id=”resultsList”

		 width=”100%” height=”100%”

		 visible=”false”

		 visible.resultsList=”true”>

		 <s:layout>

			 <s:VerticalLayout gap=”10” horizontalAlign=”center”
verticalAlign=”middle”/>

		 </s:layout>

	 </s:Group>

	 <s:Group id=”filterResults” width=”100%” height=”100%”

		 visible=”false” visible.filterResults=”true”>

		 <s:layout>

			 <s:VerticalLayout gap=”4” horizontalAlign=”center”
verticalAlign=”middle”/>

		 </s:layout>	

	 </s:Group>

</viewer:WidgetTemplate>

 Listing 3: Widget template

Developer's Corner

36 au  Summer 2011  esri.com

G	 Examine the code for old mx components that could be “Sparkified.” For ex-
ample, if the old code uses an mx:Text, then its Spark counterpart is s:Label; an
mx:HBox could become an s:Hgroup, mx:Button could become s:Button, and
mx:ComboBox could become an s:DropDownList.

<	 Another practical tip is to copy all the old mx:Script code from the old widget
and paste it inside the new fx:Script block. As mentioned earlier, don't copy the
mx:script block in its entirety; just copy the contents between the <![CDATA[]]>.
There will be several errors that will have to be addressed one at a time.

M	 Replacing the import statements in the script block that have changed in the
ArcGIS API for Flex 2.2 is important.

SFV import statement
Replacement import statement
in ArcGIS API for Flex 2.2

import com.esri.solutions.
flexviewer.SiteContainer

import com.esri.viewer.
ViewerContainer;

import com.esri.ags.symbol.* import com.esri.ags.symbols.*;

import com.esri.ags.tasks.Query import com.esri.ags.tasks.
supportClasses.Query;

import com.esri.ags.tasks.
FeatureSet

import com.esri.ags. FeatureSet.

 Listing 4: Replace import statements.

	 One simple way to fix these is to examine the reported compile error. Double-
click it to go to the specific line; put the cursor at the end of the offending class;
and press Ctrl+Spacebar for Content Assist, which will add the required import
statement.

<	 While it is not required, it is a good practice to migrate mx:Repeater to the
Spark DataGroup class. Accomplishing this involves creating three new items,
*Results.as, *ResultDataGroup.as, and *ResultItemRenderer.mxml. Fortunately,
there are several examples of this code in the ArcGIS Viewer for Flex. A quick
shortcut: simply copy and paste these three items from SearchWidget and
rename them with the new widget’s name.

P	 If the old widget used an mx:Repeater, the code probably has many references
to its dataProvider. It will be necessary to create a bindable private var of type
ArrayCollection to replace it. Everywhere in the code that references the repeat-
ers, dataProvider must be changed to reference this new ArrayCollection.

N	 The new ArcGIS Viewer for Flex allows developers to specify a custom info
window to use with a particular widget or one of the widget templates that
comes standard with the viewer. Using this new capability involves several code
additions and changes, such as overriding the widget’s showInfoWindow func-
tion. Rather than identifying each line that must be changed and added in this
article, look at one of the existing core Viewer widgets and search for “info.” That
search will return items like the infoURL string, which holds the infoURL string
from the widget configuration file, or the DATA_CREATE_INFOWIDGET event.

P	When using the new info window and data group (when replacing mx:Repeater),
a couple of new import statements must be added:

import com.esri.viewer.IInfowindowTemplate;

import mx.core.UIComponent;

import spark.components.supportClasses.ItemRenderer; and

import com.esri.viewer.AppEvent.

P	If the data group and item renderer will be updated, the mouseOverRecord,
mouseOutRecord, and clickRecord event handlers must also be updated to
convert events passed to these handlers to an itemRenderer instead of using
the infoData object.

About the Authors
Robert Scheitlin is the GIS
manager for Calhoun County,
Alabama. A GIS software devel-
oper for 12 years, he has worked
on projects that included full
ArcObjects custom applications,
ArcGIS Engine applications, and
ArcGIS Server API for Flex and
Flex Viewer applications. He has
used and customized the Sample
Flex Viewer since its release and
supported Flex developers on the
ArcGIS API for Flex forum. After
initially focusing on Visual Basic
and Visual Basic. NET, he is now
focusing primarily on Flex. His
background as an Esri Authorized
Instructor has given him the abil-
ity to teach others about software
development and customization.

Bjorn Svensson is the lead prod-
uct engineer for ArcGIS API for
Flex and ArcGIS Viewer for Flex.
He has worked with web mapping
at Esri for 10 years. Previously
he worked as a GIS consultant
in Africa, Asia, Europe, and the
Americas.

Derek Law is part of the ArcGIS
Server product management
team, covering the ArcGIS Viewer
for Flex and Silverlight. He has
been with Esri for 10 years, with
extensive experience working
with geodatabases and ArcSDE
technology. In recent years, his
focus has been on the configu-
rable client viewers for ArcGIS
Server.

 Mark Deaton’s widget shows a changing
series of NEXRAD radar reflectance images
(indicating severe weather) over the US for
the previous hour. It also demonstrates the
use of WMS layers via the ArcGIS Flex API.

37esri.com  Summer 2011  au

var llResult:LiveLayerResult = ItemRenderer(event.target).data as

LiveLayerResult;

M	 When migrating widget code and using the queryTask, if the code is not con-
necting to an instance of ArcGIS Server 10 or higher, you need to set queryTask.
useAMF = false.

N	 Title bar buttons in the new ArcGIS Viewer for Flex no longer return events, so
the click handler does not require an event.

Old format
private function toggleFilterPanel(event:MouseEvent):void

New format
private function showResultsList():void

P	 The order in which title bar buttons are added is the opposite order in which
they were added in the SFV (e.g., the first button to appear on the left should
now be the last one added).

<	 The third property for the addTitlebarButton function is used to designate
whether the button is selectable. The default value is true.

P	 The assets directory in the SFV was com/esri/solutions/flexviewer/assets/
images/icons/. The assets directory in ArcGIS Viewer for Flex is located at
assets/images/. (Notice there is no subfolder of icons.)

	 To summarize, there are many key items that Flex developers should be aware of when
migrating a custom widget from the Sample Flex Viewer to the ArcGIS Viewer for Flex. An
example of migrated widget code can be found at gis.calhouncounty.org/DevSummit2011.
It demonstrates the LiveLayerWidget code and includes developer comments.

Online Resources
Differences between Adobe Flex
SDK 3 and Adobe Flex SDK 4
adobe.com/devnet/flex/articles/
flex3and4_differences.html

Esri API changes between ArcGIS
API for Flex 1.x and 2.x
http://help.arcgis.com/en/
webapi/flex/help/index.
html#/Migrating_from_1_3_
to_2_0/017p0000000z000000/

ArcGIS Viewer for Flex Resource
Center
links.esri.com/flexviewer

Developer's Corner

