Using Business Analyst to Benchmark Your Way to Success

Susan Zwillinger, GISP Principal Consultant

Abstract

Benchmarking is an essential and sometimes overlooked skill. It can help us to provide context, set meaningful targets, gain insight into trends, and evaluate performance relative to a business strategy or value proposition. This presentation will describe 8 techniques to improve location analytics for retail applications. The techniques are analogous to 8 scientific tools, which are: 1) The Mass Spectrometer, 2) The Telescope, 3) The Microscope, 4) The Scale, 5) The Black Light, 6) The Funnel, 7) The Petri Dish and 8) The Mirror. Each tool will be translated into an analytics technique using an example from retail projects that used Esri Business Analyst and the Spatial Statistics toolbox. After the data has been created through the analytics process, it can be transformed into a dashboard that provides business value and improves operational decisions.

This presentation expands upon my UC 2015 presentation (4 Lessons in Creating a New Trade Area Methodology for Retail Stores) and it is inspired by the 8 techniques from the "Seven Data Story Types" described by Ben Jones who based his data visualization techniques on Christopher Booker's The Seven Basic Plots: Why We Tell Stories. The benchmarking techniques are not necessarily new ideas, but innovation and insight are often the result of a process and not an epiphany. The goal of this presentation is to encourage analysts to develop their own analytical process to improve the business decisions for their organization.

.

8 Scientific Tools – 8 Techniques for Benchmarking

- 1. The Mass Spectrometer
- 2. The Telescope
- 3. The Microscope
- 4. The Scale
- 5. The Black Light
- 6. The Funnel
- 7. The Petri Dish
- 8. The Mirror

The Mass Spectrometer: Parts of the Whole

Where are the best markets for craft beer and pizza?

US Population by Age Groups

2015 Millennial Context in the US

- 24% of the US population
- Just slightly more than other groups, except those age 65+

US Population: Percent by Age

US Median Household Income by Age Group

2015 Millennial Income Context in the US

- 42% of millennials make < \$15,000 in annual income.
- % of millennials in higher income categories is low compared to other age groups.

US Householders by Age Group and by Percent of Income Category

2015 Millennial Income Context in the US

• 53% of millennials make < \$50,000 in annual income.

US Householders by Age Group and Percent of Income Group (2015)

2) The Telescope: Zoom Out

Percent Millennials by State

How to Calculate a Base Comparison Index

- First, calculate the percentage for your area of interest.
 - Washington D.C.'s population is about 34% millennials.
- Second, calculate the percentage for your base area.
 - The US 2015 Population is about 24% millennials.
- Divide the percentage of your area of interest by the base area and multiple by 100.
 - -(34.137%/23.615%) * 100 = an index of 145

Millennial Index by State

Millennial Percent Index by DMA

DMA Millennial Percent: Top 5

Number of Millennials Index: Top 10 DMAs

How to Calculate an Average Comparison Index

- First, calculate the values for each area and then the average of these values
 - The average number of millennials in DMAs is 358,076.390476
- Second, divide 100 by the average value
 - -100/358,076.390476 = 0.000279270017961998
- Multiply each record by the result in the second step.
 - -[Age18_34_CY] * 0.000279270017961998
 - -This ensures that the average will always equal 100, which then serves as the benchmark.

3) The Microscope: Zoom In

Refining Site Selection Criteria

43,942 Highway Exits in the US

40% of McDonalds are within 1 Mile of a Highway Exit

7400+ Pizza Hut Locations in the US

30% of Pizza Huts are within 1 Mile of a Highway Exit

4) The Scale: Show the Differences

Comparing Customer Income Profiles

4200+ Little Caesars Pizza Locations

152 MOD Pizza Locations

Comparison of Major Pizza Chains in California

Competitor Average for	Average of 2015	Average of 2015	Average of 2015
2-Mile Ring	Total	Average	Median
Areas	Population	Household	Household
		Size	Income
Little Caesars	69,969	3.06	\$54,193
Shakey's	99,752	3.22	\$55,949
Papa Murphy's	41,075	2.67	\$55,983
Me-n-Ed's	42,911	3.03	\$57,393
Domino's	71,866	2.86	\$59,284
Pizza Hut	84,619	3.09	\$59,844
Papa John's	80,387	2.90	\$61,334
Pizza Guys	62,917	2.97	\$61,659
Blast 825	39,333	2.60	\$62,613
Mountain Mike's	50,663	2.86	\$66,915
Pizza Rev	106,999	2.78	\$68,437
Round Table	55,323	2.76	\$68,642
Blaze	81,632	2.67	\$71,434
Pieology	64,763	2.90	\$74,737
Mod Super Fast	71,542	2.78	\$79,452

Traditional

Fast Casual

Which new MOD Pizza locations look like the top 20% in terms of median household income?

5) The Black Light: Find the Outliers

Daytime population for Flowing Wells (33,225) is in the top 40% of all MOD locations

6) The Funnel: Combine and Intersect

Hot Spot Grid by Millennial Number

7 Areas that are 40% or more Millennial with 50,000 or more Millennials

30 Hot Spot Grids that are 24% + and 300,000 + Millennials

Grouping Analysis

Using Grouping Analysis
in the Spatial Statistics
Toolbox, we can combine
the percent millennials
and the total number in
the 20 mile grid areas to
see how these factors
combine.

Group 3 – Highest %, Average Total

 The green group has an average percentage of 40% and an average of 27,931 millennials.

Group 3: Count = 84, Std. Distance = 23995.3854, SSD = 127.1698

Variable	Mean	Std. Dev.	Min	Max	Share
P_AGE18_34	0.4043	0.0565	0.3439	0.6389	0.5105
AGE18_34_CY	27931.6786	23995.3854	1974.0000	137389.0000	0.0777

Group 4 – Highest Total, Above Average %

 The orange group has an average percentage of 25% and an average of 586,128 millennials.

Group 4: Count = 21	, Std. Distance =	311737.9932	, SSD = 534.0620
---------------------	-------------------	-------------	------------------

Variable	Mean	Std. Dev.	Min	Max	Share
P_AGE18_34	0.2568	0.0194	0.2313	0.3106	0.1373
AGE18_34_CY	586128.0476	311737.9932	376373.0000	1743002.0000	0.7843

Group 6 – High Total, Average %

 The brown group has an average percentage of 24.5% and an average of 162,655 millennials.

Group 6: Count = 148, Std. Distance = 66575.6965, SSD = 225.5755

Variable	Mean	Std. Dev.	Min	Max	Share
P_AGE18_34	0.2446	0.0295	0.1859	0.4112	0.3899
AGE18_34_CY	162654.7500	66575.6965	88434.0000	366730.0000	0.1597

Grouping Analysis for Millennial Hot Spots

Grouping Analysis for Older Millennials

• The purple, red, and green groups all have a higher than average percent and total older millennials.

	# of Older Millennial	%
Average	12,112	12.1%
Purple	1,104,853	17.0%
Red	289,840	16.0%
Green	89,052	14.2%
Blue	11,631	15.9%
Orange	7,163	12.4%
Brown	2,966	10.0%

Grouping Analysis for Older Millennials

115 of the 152 MOD Pizza are in these areas

Older Millennial Hot Spots with No MOD

118 Opportunity Areas

Historical US Brewery Count

https://www.brewersassociation.org/statistics/number-of-breweries/ Bart Watson, Used with permission.

Historical US Brewery Count

https://www.brewersassociation.org/statistics/number-of-breweries/ Bart Watson, Used with permission.

17.9% Increase from 2014 to 2015

U.S. Brewery Count

	2012	2013	2014	2015	'14 to '15 % Change
CRAFT	2,401	2,863	3,676	4225	+ 18.1
Regional Craft Breweries	97	119	135	178	+ 31.9
Microbreweries	1,149	1,464	2,041	2,397	+ 21.6
Brewpubs	1,155	1,280	1,500	1,650	+ 12.2
LARGE NON-CRAFT	23	23	26	30	
OTHER NON-CRAFT	32	31	20	14	
Total U.S. Breweries	2,456	2,917	3,722	4,269	+ 17.9

https://www.brewersassociation.org/statistics/number-of-breweries/ Bart Watson, Used with Permission.

Seeing the Invisible: Schlieren Flow Visualization

Adam Cole/NPR YouTube. Used with permission.

http://www.npr.org/2014/04/09/300563606/what-does-sound-look-like

Seeing the Sound of a Clap

Adam Cole/NPR YouTube. Used with permission.

http://www.npr.org/2014/04/09/300563606/what-does-sound-look-like

Should a craft beer and pizza place open in my neighborhood?

Grouping Analysis for Older Millennials

Millennial Density in Pittsburgh

Laptops and Lattes Density in Pittsburgh

Urban Chic Density in Pittsburgh

/ North

Metro Renters Density in Pittsburgh

8 Scientific Tools – 8 Techniques for Benchmarking

- 1. The Mass Spectrometer (Parts of the Whole)
- 2. The Telescope (Zoom Out, Aggregation)
- 3. The Microscope (Zoom In, Individual, Specific)
- 4. The Scale (Show the Difference, Rank)
- 5. The Black Light (Understand the Outliers)
- 6. The Funnel (Combine & Intersect)
- 7. The Petri Dish (Change Over Time)
- 8. The Mirror (The Personal Perspective, Seeing the Invisible)

Benchmarking: Starts with a PROCESS; leads to an epiphany.

References

- Beazley, David. "The Forensic Photographer." Online documentary video. http://www.beazknees.com/ Beazknees, March 2015. Web. All images used with permission. (Slide 3)
- Hubble Space Telescope. https://youtu.be/WNVY9BcIDok Mar 6, 2014. Standard YouTube license, Creative Commons. F. Summers (STScI) https://hubblesite.org/video/5/science Production date: May 20, 2011. (Slide 4-6)
- Author's photo. (Slide 7)
- Ben Jones. Tapestry 2015 Short Stories Ben Jones: "Seven Data Story Types".
 https://www.youtube.com/watch?v=sEZj-eUfbNo Published on Mar 13, 2015. (Slide 8)
- Michael Pereckas. https://en.wikipedia.org/wiki/Mass_spectrometry#/media/File:IonSpec_FT-ICR_(Fourier_transform_Ion_cyclotron_resonance)_Mass_spectrometer.jpg Uploaded December 23, 2010 Creative Commons. (Slide 9)
- https://en.wikipedia.org/wiki/Mass_spectrometry#/media/File:ObwiedniaPeptydu.gif
 Uploaded: November 19.20,5.
 GNU General Public License. (Slide 10)
- Florian Klauer. https://images.unsplash.com/27/type-set.jpg?ixlib=rb-0.3.5&q=80&fm=jpg&crop=entropy&s=0c0d7694be5d16aec2f65c99f075b432 Free photos. (Slide 11-12)
- Alex Franzelin. https://unsplash.com/photos/7HVGbM4Jill Free photos. (Slide 19)
- Greg Rakozy. https://images.unsplash.com/photo-1452611545118-2b35b308caf5?ixlib=rb-0.3.5&q=80&fm=jpg&crop=entropy&s=f7d930472b1c3a2e6d13098cbecd4006 Free photos. (Slide 20)
- <u>NASA</u>, <u>ESA</u>, K. Kuntz (JHU), F. Bresolin (University of Hawaii), J. Trauger (Jet Propulsion Lab), J. Mould (NOAO), Y.-H. Chu (University of Illinois, Urbana), and <u>STScl</u>. http://hubblesite.org/newscenter/archive/releases/2009/07/image/h/results/100/ (Slide 21)

References

- Acagastya. https://en.wikipedia.org/wiki/Microscope#/media/File:Compound_Microscope_(cropped).JPG Creative Commons. (Slide 30)
- © Giuseppe Porzani. https://stock.adobe.com/stock-photo/bilancia-di-precisione/49469340 Purchased image. April 21, 2016. (Slide 45)
- http://www.dea.gov/pr/multimedia-library/image-gallery/lab/analytical_balance_mettler_ae-260.jpg
 Public Domain.
 (Slide 46)
- Author's photo. (Slide 53-54)
- Andres Arango/Demand Media. Mark Heidelberger. "How to Make Things Glow in the Dark."
 <u>http://www.ehow.com/how_4843493_things-glow-dark.html</u> (Slide 53-54 Photos are the authors, not from the website.)
- Author's photo. (Slide 57)
- Moomsabuy. http://www.freedigitalphotos.net/images/Science_g174-Mold_Colonies_In_Petri_Dish_p83272.html
 Published on May 16, 2012 (Slide 69)
- Bart Watson. https://www.brewersassociation.org/statistics/number-of-breweries/ Used with permission. (Slide 70-72)
- André Branco. https://unsplash.com/photos/OYcO1xSyrQ0
 Free photos. (Slide 73)
- Adam Cole/NPR YouTube. http://www.npr.org/2014/04/09/300563606/what-does-sound-look-like Used with permission. (Slide 74-75) Also on https://aeon.co/videos/is-it-possible-to-see-sound-yes-but-it-takes-some-crafty-photographic-wizardry

FOR MORE INFORMATION

Susan Zwillinger
szwillinger@4cgeoworks.com
https://www.linkedin.com/in/susanz1
@susanz4C

