
ArcGIS Runtime SDKs:
Building Cross-Platform Apps
Tyler Schiewe
Lucas Danzinger
Rich Zwaap
Rex Hansen

Agenda

• Cross-platform review

• ArcGIS Runtime cross-platform options
- Java

- Qt

- .NET

Native vs Web?
• Native apps

• App installed on the device

• Use Platform / Operating System APIs

• Best performance and device integration

• Support for connected and offline workflows

• Work well when you have the ability to determine devices

• Use ArcGIS Runtime SDKs to create native apps

• Web apps
• Web site/app downloaded from a server

• Best for wider range of users on unknown devices

• Use the ArcGIS API for JavaScript to create web client solutions

• User experience and capabilities increasingly blurred as technologies evolve

http://esriurl.com/ChoosingAnAPI

Native app cross-platform considerations

• Benefits
- Share application code

- Enforces good design patterns

- Makes your app available to more users

• Challenges
- Testing

- User experience of your app may vary

- Handling platform idiosyncrasies (security, bugs, etc)

- Development cost

Building Native Apps on Multiple Platforms

• How do you choose a cross platform SDK?
- Business, technical, and user requirements

- Developer skillset

• Multiple options available
- Java

- Qt

- .NET/Xamarin

ArcGIS Runtime cross-platform options

• All Runtime APIs built on common Runtime core

Qt / QML

Android iOS

Java

macOS

.NET / Xamarin

C++ runtime core

WindowsLinux macOSAndroid iOS UWP

x86 x64 ARM
DirectX

OpenGL

QtJava .NET

Java

Qt

.NET and Xamarin

Tyler Schiewe

Lucas Danzinger

Rich Zwaap

Tyler Schiewe

Java

Cross platform Java Development

• “Write once, run anywhere”

• OpenJDK is free

• JavaFX for building modern desktop apps
with a native look and feel

• Lots of free IDEs to choose from

• Massive ecosystem of mature, open-
source libraries to use

ArcGIS Runtime SDK for Java

• ArcGIS Runtime SDK for Java targets
Windows, Mac, and Linux desktops

• Sits on the ArcGIS Runtime core
architecture (C++) via JNI

• Provides MapView and SceneView JavaFX
controls

API Architecture

C++ CoreC++ Core

InteropInterop

Java Common APIJava Common API

Java SE APIJava SE API Android APIAndroid API

JavaFX

• App launched in a native window

• Styling and theming with CSS

• Programmatic and markup (FXML) options
for creating layout

<StackPane fx:controller="com.esri.samples.mysample.SampleController"
xmlns:fx="http://javafx.com/fxml" stylesheets="/css/style.css">

<MapView fx:id=“mapView"/> <!-- SDK control -->
<HBox StackPane.alignment="TOP_CENTER" maxWidth="200" maxHeight="50" spacing="5" styleClass="panel-region">

<Label text=“Click me: "/>
<Button fx:id=“myButton" onAction=“#myEvent"/>

</HBox>
</StackPane>

Distribution

IDE

JAR file

Windows

JRE

JAR file

Runtime Core

.dll file

Linux

JRE

JAR file

Runtime Core

.so file

Mac OS X

JRE

JAR file

Runtime Core

.dylib file

Development environment Cross platform deployments

Compile

Deploy

An app for Windows, Linux, and
Mac

Demo

Summary

• Pros

- Tools are free for commercial use

- Deployments can be identical for ALL platforms

- JavaFX apps style for the platform

• Cons
- Clients must have Java installed*

- Not targeted for mobile or web apps

Lucas Danzinger

Qt

Agenda (Qt)

• What is Qt?

• Which platforms can I build for?

• How do I get set up?

• What language do I use?

• What will my apps look like?

• What are the Pros and Cons?

Code less, create more, deploy everywhere

• Write once, deploy everywhere

• A complete cross-platform software framework

- C++ libraries

- Ready-made UI elements

- Tooling

• Over 1 million developers worldwide

• Open-source community

What is Qt?

The Qt Company – www.qt.io

• Windows – x86, x64

• Linux – x64, arm 64 (beta)

• macOS – x64

• Android – armv7, armv8, x86

• iOS – arm64, sim

Which platforms can I build for?

How does it work?

Android
(via JNI & NDK)

iOS
(via cocoa)

macOS
(via cocoa)

Linux Windows
Native platform

APIs (http, file i/o,
sensors etc)

Java Objective C Objective C C++ C++

Qt Abstracted API
QFile, etc

QNetworkManager,
QFile, etc

Qt GUI (and other) Libraries
Charts, QImage

ComboBox, Button,
Charts, QImage

Your App

Language

C++ Compiler clang/gcc clang clang gcc MSVC

Platform

• Setup Qt:

- Create account

- License / open-source?

- Install kits

• Setup ArcGIS Runtime SDK for Qt

- https://developers.arcgis.com/qt/latest/

• Compiler, SDK dependencies

- macOS/iOS: Xcode compiler

- Windows: Visual Studio compiler, debugging tools

- Linux: GCC compiler

- Android: Android NDK and SDK

• IDE

- Qt Creator

Setup

2 APIs: same Runtime Core (C++)

• C++ API
- Modern C++ language (C++ 11)

- Fast performance

- DSA open source app built with this

• QML API

- Easy to use & learn

- Imperative JavaScript business logic code

- AppStudio (Survey 123)

What language will I use?

QML API
Example QML API code

Highly
readable
JSON/CSS-
like syntax

Imperative
JavaScript
Code to
handle events

Dynamic
property
binding

Declarative
UI elements

ArcGIS
Runtime

Qt Widgets (Desktop)

• Available Styles

- Windows style

- Mac style

- Fusion style

Styled look and feel

Qt Quick Controls (QML – all platforms)

• Available Styles

- Default style

- Material style

- Google’s guidelines

- Universal style

- Microsoft’s guidelines

- Fusion style

- Desktop-oriented look and feel

- Imagine style

- Based on image assets

• Default style• Material style• Universal style• Fusion style• Imagine styleStyled look and feel

Cross platform sensors

Qt Demo

What are the Pros and Cons?

Pros

- Write once

- Same APIs and code

- Consistent, styled look and feel

- Access to device sensors

- Open-source community

- QML or C++ - based on experience

Cons

- Niche Native APIs unavailable through Qt (e.g. AirPlay)

- Won’t match the look and feel of the native platform (but can be a pro)

- Qt framework can increase apps size

- Setup can take some time

ArcGIS Runtime SDK for Qt

Rich Zwaap

.NET

Agenda - .NET and Xamarin

• Xamarin

• ArcGIS Runtime for .NET

• Demo

• Pros and Cons

What is Xamarin?

• MS dev for iOS and Android

• Four main parts

• 1) .NET on iOS and Android
- Base Class Library

- Primitives, collections, data
objects, IO, networking, reflection,
exception handling, logging, etc,
etc, etc

- Same across platforms

 Shared business logic

What is Xamarin?

• 2) Native iOS and Android APIs…
- Just exposed in C# and Visual Studio

- Same APIs used by native iOS and
Android devs

- UI, sensors, notifications, background
tasks, app architecture, etc

 Full power of each platform

What is Xamarin?

• 3) Abstraction libraries
- Xamarin Forms for UI

- Xamarin Essentials for everything else

- UWP (in addition to Android and iOS)

- Enable code-sharing outside of core
business logic

• 4) Tooling
- Fully featured IDE support

- Debugging, design surface, profiling,
intellisense, test instrumentation, etc

What is the ArcGIS Runtime SDK for .NET?

• Surfaces all Runtime capabilities to .NET devs

• Supports:
- Windows Presentation Foundation (WPF)

- Universal Windows Platform (UWP)

- Xamarin.Android

- Xamarin.iOS

- Xamarin.Forms (Android, iOS, and UWP)

- .NET Standard 2.0*

• Same non-UI API surface for all platforms

• Native platform and Xamarin Forms UI components

.NET, UWP, and Xamarin

Demo

.NET and Xamarin – Pros and Cons

• Pros
- Xamarin and .NET are (mostly) open source

- Target all platforms in a single IDE, on a single OS

- Full access to all native platform APIs
- Updates delivered in sync with underlying platforms

- Platform abstractions also available

- Large and active community

.NET and Xamarin – Pros and Cons

• Cons
- Visual Studio not free for most commercial uses

- Not 100% abstraction of all platform code

- Significant technology stack (Visual Studio, Android SDKs, XCode…)

- Very rapid release cadence

- You need a Mac and a Windows machine to target all platforms

ArcGIS Runtime cross-platform options

• All Runtime APIs built on common Runtime core

Qt / QML

Android iOS

Java

macOS

.NET / Xamarin

C++ runtime core

WindowsLinux macOSAndroid iOS UWP

x86 x64 ARM
DirectX

OpenGL

QtJava .NET

Summary

• How do you choose a cross platform SDK?

- Understand expectations of your users

- Understand skillset of your developers

• Options and ArcGIS Runtime SDKs

- Java => ArcGIS Runtime SDK for Java

- Qt => ArcGIS Runtime SDK for Qt

- .NET/Xamarin => ArcGIS Runtime SDK for .NET

Other sessions
• Wednesday, July10

- ArcGIS Runtime SDK for Qt: Building Apps
12:15 PM – 1 PM
Demo Theater 8

• Thursday, July 11
- ArcGIS Runtime SDK for Java: Building Apps

10:30 AM – 11:30 AM
Demo Theater 8

- ArcGIS Runtime SDKs: Building .NET Apps
2:30 PM – 3:30 PM
Room 30 D

ArcGIS Runtime:
Road Ahead
8:30 AM – 9:30 AM
Room 15 B

Thursday, July 11

ArcGIS Runtime:
Building Offline Applications
2:30 PM – 3:30 PM
Room 31 A

Questions?
developers.arcgis.com/arcgis-runtime

Please Share Your Feedback in the App

Download the Esri
Events app and find

your event

Select the session
you attended

Scroll down to
“Survey”

Log in to access the
survey

Complete the survey
and select “Submit”

