ArcGIS GeoEvent Server: Visualizing Real-Time Data

RJ Sunderman and Qingying Wu
ArcGIS Enterprise
With Real-Time Capabilities

- Ingestion
- Actuation
- Visualization
- Analytics
- Storage

ArcGIS GeoEvent Server Role
Spatiotemporal Big Data Store

Live Features Stream Services
Live & Historic Aggregates & Features
Agenda:

1. Visualization Overview
2. Visualizing Stream Layers
3. Visualizing Features
4. Resources & Wrap-Up
Visualization Overview
Stream Layers vs. Feature Layers
Visualization

- **Stream layers subscribe** to stream services to immediately visualize observations
 - does not require storage, low latency, no playback
- **Map & Features layers periodically poll** to visualize most current observations
 - backed by an enterprise geodatabase (EGDB) or a spatiotemporal big data store (BDS)
 - history can be retrieved & queried for playback
Stream Layers

advantages when working with real-time data

- More **responsive** and more **efficient** than feature layers.
- Stream Layers display **immediately** and refresh **automatically**.
- Data is only sent to the client **once**.
Visualization of real-time data
adding a stream service as a layer in a web map

- Navigate to ‘My Content’ and select the layer item
- Note that stream layers have a different icon than feature layers
Visualization of real-time data
adding a stream service as a layer in a web map
Visualization of real-time data adding a stream service as a layer in a web map

Another way you can add a stream layer to a web map:

• Open the ArcGIS REST Services Directory
• Navigate to the stream service’s web page
• Copy the stream service’s URL
Visualization of real-time data
adding a stream service as a layer in a web map

- Paste the URL into the text field as illustrated here:

https://caramon.esri.com/server/rest/services/AVL-Broadcast/StreamServer
Stream Layers in Webmaps
Visualization of real-time data
adding a stream service to ArcGIS Pro 2.2+

- Add a Portal or ArcGIS Online item
- From a server connection
- Add Data From Path
Visualization of real-time data symbolizing a stream service in ArcGIS Pro 2.2+

- Set Renderer
 - Single Symbol
 - Unique Values
 - Graduated Symbols
 - Graduated Colors
- Current / Previous Observations
- Feature Labeling
- Vary by attribute
 - Transparency
 - Rotation
 - Size
 - Color
Stream Layers in ArcGIS Pro
Visualizing Features

that use data in the spatiotemporal big data store
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Visualize raw feature view and inspect feature-level attributes
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Visualize on-the-fly aggregation of data and inspect feature-level attributes
 - Set feature threshold to switch between raw feature view and aggregation view
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Visualize aggregation of data and attribute statistics
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Display data using content-dependent as well as scale-dependent rendering
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Replay (via time slider) historic observations in aggregation or raw feature view
Visualization of observation data

- Map & Feature services that use data in the spatiotemporal big data store enable you to:
 - Perform exploratory queries over any combination of
 - Attributes
 - Space
 - Time
Visualizing observation data

Map & feature services using data from a spatiotemporal big data store
Spatiotemporal big data store

Aggregation styles to support on-the-fly aggregation

• Aggregation styles supported:
 – Geohash, square, pointy and flat hexagon / triangle
Geohash

- Geohash is a way of encoding lat/lon points as strings
- Geohash divides the world into a grid of 32 cells, with 4 rows and 8 columns, each represented by a letter or number
- Each cell can be further divided into another 32 cells, total 12 levels of details (LOD)
Spatiotemporal big data store
geohash spatial indexing to support on-the-fly aggregation

- As data is written to a dataset in the spatiotemporal big data store,
 a spatial index for a geohash aggregation is continuously updated.

lodType=geohash&**lod**=9

```json
{
  "features": [  
    {  
      "attributes": {  
        "objectId": 1,
        "geohash": "eGpFlurgw",
        "lodEncoding": "eGpFlurgw",
        "count": 12
      },
      "geometry": {  
        "rings": [
          
        ]
      }
    }
  ]
}
```

geohash aggregation (based on a geohash index)
Spatiotemporal big data store
geohash & square spatial indexing to support on-the-fly aggregation

- As data is written to a dataset in the spatiotemporal big data store
 - a spatial index for square aggregation is also continuously updated

geohash aggregation (based on a geohash index)

square aggregation (based on a square index)
Spatiotemporal big data store
triangle spatial indexing to support on-the-fly aggregation

• As data is written to a dataset in the spatiotemporal big data store
 – spatial indices for ‘pointy’ and ‘flat’ triangles aggregations are continuously updated
Spatiotemporal big data store

hexagon (same as triangle) spatial indexing to support on-the-fly aggregation

- As data is written to a dataset in the spatiotemporal big data store
 - spatial indices for ‘pointy’ and ‘flat’ hexagon aggregations are continuously updated
Spatiotemporal big data store

spatial indexing to support on-the-fly aggregation

- As data is written to a dataset in the spatiotemporal big data store
 - up to four types of spatial indices are supported (geohash, square, pointy and flat hexagon/triangle)
 - an inverted index on each attribute field is created
 - a temporal index on the time field is created
Spatiotemporal big data store map services: on-the-fly aggregation of polyline and polygon features

aggregation using centroid of polyline & polygon features
Spatiotemporal big data store

visualizing features

• Customize rendering settings
 – create map service
 – update map service
Spatiotemporal big data store

visualizing features

- aggregation-viewer-server-map-service

https://github.com/esri/aggregation-viewer-server-map-service
Map and feature services backed by the spatiotemporal big data store

Visualization and replay
Map and feature services backed by the spatiotemporal big data store
Sample Applications & Tutorials

helpful links

- **StreamLayer API help:**
 - 3.x: https://developers.arcgis.com/javascript/3/jsapi/streamlayer-amd.html

- **Sample stream services with simulated data:**
 - https://geoeventsample1.esri.com:6443/arcgis/rest/services

- **Sample applications on GitHub:**
 - https://github.com/Esri/aggregation-viewer-server-map-service

- **Tutorials:**
 - http://links.esri.com/geoevent-tutorials

- **Discussions & Blogs (on GeoNet):**
 - https://geonet.esri.com/community/gis/enterprise-gis/geoevent/content
Real-time and Big Data Technical Workshops

Wednesday
- 8:30 - 9:30 ArcGIS GeoEvent Server: Visualizing Real-Time Data
- 10:00 - 11:00 Real-Time & Big Data GIS: Best Practices
- 1:00 - 2:00 ArcGIS GeoEvent Server: An Introduction
- 4:00 - 5:00 ArcGIS GeoEvent Server: Applying Real-Time Analytics

Thursday
- 10:00 - 11:00 Real-Time & Big Data GIS: Best Practices
- 2:30 - 3:30 Real-Time & Big Data GIS: Road Ahead
- 4:00 - 5:00 ArcGIS GeoEvent Server: Visualizing Real-Time Data
Please Share Your Feedback in the App

Download the Esri Events app and find your event

Select the session you attended

Scroll down to “Survey”

Log in to access the survey

Complete the survey and select “Submit”
Questions / Feedback?

RJ Sunderman
ArcGIS GeoEvent Server
Product Engineer
rsunderman@esri.com

Qingying Wu
Real-Time & Big Data GIS
Product Engineer
qwu@esri.com