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Figure 1 lod-cloud.net

The Web of Linked Open Data , aka the LOD cloud, is an open, interlinked
collection of cross-domain knowledge bases from governments, industries,

academic institutions and non-profit organizations.
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Figure 2 LOD-a-lot: lod-a-lot.lod.labs.vu.nl/

When cleaned, the cloud contains more than 28.3 billion unique
machine-readable statements derived from manual input, annotated datasets,
extracted texts, sensor observations, conceptual abstractions, and so on.
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Representations of concrete objects from the world such as persons and places
constitute a majority of central nodes within the multigraph, linking statements
and relations across datasets.
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Figure 3 lod-cloud.net

DBpedia and GeoNames are the most central dataset hubs for geographic
data in the cloud. DBpedia alone:
“[...] currently describes 4.58 million things, [...] including 1,445,000
persons, 735,000 places (including 478,000 populated places)”

https://wiki.dbpedia.org/about/facts-figures
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Motivation

The majority of geographic identifiers on LOD cloud are represented geometrically
as point coordinates , severely limiting their potential for spatial analysis.

However, simply integrating more complex geometries into the LOD cloud will
be of limited use to the Geospatial Linked Data community because:

» Graph queries involving spatial operations on high-resolution geometries do
not scale well over large datasets.

+ Geometries are merely a means to an end for spatial analysis, the proper
geometric representation of real-world entities varies by place type, scale,
and task.

Spatial extensions to RDF triplestores, such as GeoSPARQL, compute
topology on-demand and without context , meaning that topology is
computed from the geometries alone; place types are ignored.

Computing topology requires pre-processing steps to clean geometries
for errors such as sliver polygons, something not currently supported by
Linked Data based frameworks.
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Topology Matters, Metric Refines:

‘In geographic space, topology is considered to be first-class information,
whereas metric properties, such as distances and shapes, are used as
refinements that are frequently less exactly captured.”

Egenhofer and Mark 1995b

blake.regalia@gmail.com



Problem Statement:

Following the slogan that “Topology Matters, Metric Refines”, knowledge graphs
will benefit from explicit topological relations in addition to complex
geometries and other place-specific properties.

Computing topology based on geometry alone is not sufficient in the context of
Linked Data for two reasons we focus on here:

1. Heterogeneous data sources and crowd-sourced datasets propagate
digitization errors along complex geometries, meaning that open data clouds
will always require pre-processing steps in order to compute topology.

2. Topology also depends on domain knowledge, vagueness and uncertainty
principles (Bennet, 2001).
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Research Objective:

Enrich the geographic LOD cloud with topological relations rather than
purely complex geometries.

Contribution 1:

Align OpenStreetMap features with DBpedia places to combine complex
geometries (polylines and polygons) with rich place type information .
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Knowledge Base Alignment:

Starting with all DBpedia places in the contiguous United States; select those
with the following place types and align them with their matching feature in
OpenStreetMap:

Polylines:

» Roadways
» Streams

Polygons:

» Cities
» Counties
* Parks

36,520 features in total .
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Contribution 2:

Precompute and materialize strict, approximate, and metrically refined
topological relations between cleaned geometries using place type knowledge.
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Figure 6 Region Connection Calculus (RCC8)
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Approximate Toplogy:

Figure 7 Broad boundaries (Clementini et al.)
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Metrically Refined Toplogy:
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Figure 8 Nine Splitting Measures (Egenhofer et al.)
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Code |Types|Description
Refers to (Multi)Polyline geometry types.
] Refers to (Multi)Polygon geometry types.
E Refers to either of the two aforementioned geometry types.
Crisp Boundary Relations for G/G pairs — RCC8 (Cohn|
et al., 1997)
DC G/G_|Disconnected
EC G/G_ [Externally Connected
PO G/G__|Partially Overlaps
EQ G/G_|Equals
TPP/i_|G/G _|Tangential Proper Part U Tangential Proper Part Inverse
NTPP/i|G/G _|Non-Tangential Proper Part U Non-Tangential Proper Part Inverse
Crisp Boundary Relations for L/G pairs — as used by)|
Formica et al. (2012).
TCH |L/E |Touches
PTH _|L/G_|Passes Through
INC _|E/L_|Inclusion
Crisp Boundary Relations for L/L pairs Formica et al.
(2018).
CRS L/L_ |Crosses
TCS |L/L_|Touch Crosses C TCH
Broad Boundary Relations — as defined by Clementini and
Di Felice (2001).
M E/G_|Nearly Meets C DC
nCt G/G__|Nearly Contains C PO
ng G/G_|Nearly Equals C (PO U TPP/i U NTTP/i)
Refined Topological Relati

MW |G/G |Mostly Within C PO: the area of intersection is greater than or equal
to 80% of P’s area.

bT G/G [Barely Touches C EC: the spheroidal length of the intersecting
boundary is less than 10m.

RAL

Ras |L/E |[Runs Along (L/L), Runs Alongside (L/G): the area of intersection

between the features’ broad boundary buffers is greater than s
threshold value as described in Section 3.2

CON |L/L |Connects C TCH: at least one of the points where the polylines in-
tersect is colocated with one of the points that cither polyline starts
or ends.

Table 1 Topological operator codes as defined by related works as well as our
metrically-refined operator codes. Py refers to the polygon with lesser area and P, the
polygon with greater arca.

stom
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The resulting topological relations dataset produces 120,681 distinct RDF
statements covering various topological relations between features of the
selected place types within the contiguous United States.

Putting these topological relations to use, we attempt to validate any existing
relations between places on DBpedia.
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Distribution of all place-place relation predicates:

1. 50% Adjacency: primary and inter-primary cardinal direction relations, as
well as “adjacent communities” linksets.
2. 48% Partonomy: dbo:isPartOf, dbo:largestCity, dbo:countySeat,

dbo:location predicates.
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m unverifiable © verifiable m accurate ® supplemental

adjacency 10 10,819

partonomy 0 14,537 -

Ok 10k 20k 30k 40k

1. Unverifiable: Relation is absent from our dataset

2. Verifiable: Relation exists in both datasets, but the topological relation we
observe does not align with the expected predicate.

3. Accurate: Relation exists in both datasets and the topological relation aligns

with the expected predicate.
4. Supplemental: Relation is absent from DBpedia; demonstrates volume of
our contribution to enriching the knowledge base.
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How does this compare to GeoSPARQL?
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select 7countyA 7borderingCounties {
select 7countyA (count(?countyB) as 7borderingCounties) {
7countyA a experiment:County ; geosparql:hasGeometry 7geomA .
7countyB a experiment:County ; geosparql:hasGeometry 7geomB .
filter(geof:sfTouches(7geomA, 7geomB))
} group by 7countyA
s} order by desc(?borderingCounties)

RS

~

Listing 1.4 Query for all bordering counties using GeoSPARQL’s extensible value
testing function geof : sfTouches, which computes the EC topological relation on-the-
fly.

1

2 select 7countyA 7borderingCounties where {

3 select ?countyA (count(?countyB) as ?borderingCounties) {

1 7countyA a experiment:County . 7countyB a experiment:County .

5 { ?countyA agt:touches ?countyB }

6 union { 7countyB agt:touches 7countyA }

7 } group by 7countyA

s} order by desc(7borderingCounties)
Listing 1.5 Query for all bordering counties using our agt:touches predicate, which
represents the EC topological relation that was materialized by precomputing topology
for all features.

Figure 9 Selecting bordering counties when topology must be computed on-demand creates a

combinatorial explosion. Our precomputed approach is optimized for graph queries since the
topological relations are already materialized in the triplestore.
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Figure 10 GeoSPARQL fails to capture any relations due to tiny sliver polygons. Our approach
captures all 8 externally connected relations and qualifies one as barely touches.
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How can topology be used on geospatial linked data in practice?
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1 select 7person 7placeBorn ?placeDied where {

2 ?placeBorn a :City . 7placeDied a :City

3

4 dbr:Mississippi_River 7interactsA 7placeBorn .

5 values 7interactsA { agt:touches agt:crosses agt:nearlyMeets }
6

7 dbr:Mississippi_River 7interactsB 7placeDied .

8 values 7interactsB { agt:touches agt:crosses agt:nearlyMeets }
9

10 filter(?placeBorn != 7placeDied)

11

12 service <http://dbpedia.org/sparql/> {

13 ?person a dbo:Person ;

14 dbo:birthPlace 7placeBorn ;

15 dbo:deathPlace 7placeDied

16 }

17 }

Figure 11 SPARQL query asking: What persons of historical significance were born in a city along the
Mississippi River and then died in another city also along the river?
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Topological Reasoning:
“Coastal cities” are a class of cities that have an adjacency relation to the ocean.

“Landlocked regions” are administrative regions that lack direct access to some
resource due to being entirely surrounded by other administrative regions.

“Accessibility” reasoning:

State M (3 PO.State L 3 NTPP.State LI 3 TPP.State) C L
NTC = County N3 NTPP.State
ParksInNTC = Park M (Vv PO.NTC U 3 NTPP.NTC)

County M (3 PO.County LU 3 NTPP.County LI 3 TPP.County) C L

Parks that can be accessed via counties that are non-tangential proper parts to
their state boundary.
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Thank you
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avg. area of...
region-region||EQ| EC| PO|TPP/i|NTPP/ijnE|nM|nCt|\mW |bT||smaller polygon|larger polygon
park-park 1] 220 9 10 49| 0| 84 0 3 4 477km? 3,952km?
park-city 0 283 160 79 7400 0] 120 14| 47/291 22km? 617km?
park-county 0 516| 512 135 1,645 0 15 1| 74/439 A11km’ 4,971km’
city-city 0/11,827| 48 58 189 0/386] o0 20|27 65km? 170km?
city-county 1| 6,768(1,046| 3,397 12,496| 0| 84 5 280|880 40km? 2,694km”
county-county 0| 9,117 0 1 9] 0] 25| 0 0 0 2,048km’ 3,302km’

Table 2 Number of region-to-region relations materialized for each place type combi-

nation by row, and each topological relation by column using codes defined in Table
1.
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avg. length/area of...
polyline-region||PTH| TCH| INC| nM|bT|RAS||polyline polygon
road-park 137] 984 155[13,928| 10| 11| 316km| 1,169km>
road-city 3,072(17,302|3,303|19, 528|106 100|| 425km 137km?>
road-county 7,041\ 5,597(3,751| 4,579|213 9[| 383km| 2,739km?
stream-park 156 220( 123| 1,303| 3 5/ 293km|  4,180km?
stream-city 708| 2,516 285| 2,973|106| 382|| 408km 258km”
stream-county 1,502 1,491(1,718 828[118| 241 418km| 4,221km?>

Table 3 Number of polyline-to-region relations materialized for each place type com-
bination by row, and each topological relation by column using codes defined in Table
1.
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avg. length of...

polyline-polyline|| CRS|TCS|CON nM |RALS||shorter polyline|longer polyline
road-road 9, 861 2| 658(100,790| 65 20km 127km
road-stream 4,109 0 84| 7,922 94 T9km 556km
stream-stream 12 0| 237 4,573 2 5km 24km

Table 4 Number of polyline-to-polyline relations materialized for each place type
combination by row, and each topological relation by column using codes defined in

Table 1.
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