Arc Hydro in ArcGIS Pro: The Next Generation of Tools for Water Resources

Dean Djokic
Topics

• Definitions
• Review of core hydro tools
 - Difference between “hydro” and “Arc Hydro”
• What is Arc Hydro?
• Arc Hydro Pro development plan and status
• What’s new with Arc Hydro
• Getting involved
• Questions
Hydro Analysis in ArcGIS is used to model the flow of water across a surface.

What are the primary objectives of hydrologic analysis in a GIS?
- Extract hydro information and drainage system characteristics from a digital elevation model.
- To know where the water comes from, and where it is flowing to.
GIIS for Hydro Modeling “Cycle”

- **GIS** is used for landscape characterization and model parametrization.
- **Hydrology and Hydraulics (H&H)** is used for determination of flows, depths and velocities.
- **GIS** is used for result postprocessing and visualization.
- **GIS** and H&H modeling are closely connected as one impacts the other... and many arrow in between
Review of Core Hydro Tools
Hydrology Tools

ArcMap / ArcGIS Pro

ArcGIS Pro

ArcGIS Image Server
Fill
Fills sinks in a surface raster to remove small imperfections in the data.

- Remove smaller imperfections and noise in surface raster.
- Remove larger sinks and pits in the terrain.
- Provide depth filter using Z-Limit.
Flow Direction: D8
Create a raster of flow direction from each cell to its steepest downslope neighbor using D8 method.

D8 Method
Flow Direction: D-Infinity

Creates flow direction as the steepest downward slope on eight triangular facets formed in a 3x3 cell window centered on the cell of interest.

- D-Infinity best for modeling distributed hydrologic processes, such as runoff generation or erosion.

Flow Direction: Multiple Flow Direction (MFD)

- Better flow accumulation maps in low-relief areas
- Flow partitioning is adaptive to local terrain conditions.

Flow Accumulation

Creates a raster of accumulated flow into each cell. A weight factor can optionally be applied. Select from D8, D-Infinity or MFD flow methods.
Flow Distance

- Compute vertical/horizontal downslope distance to streams over single or multiple flow paths.
- Supports D8, D-Infinity and MFD algorithms for computing flow distance.
- In case of multiple flow paths, minimum, weighted mean, or maximum flow distance can be computed.
- Used in computation of Height Above Nearest Drainage (HAND). Flooding occurs when water depth is greater than HAND.
Watershed
Determines the contributing area above a set of cells in a raster.
Ready-to-use services on ArcGIS Online: Create Watershed & Trace Downstream
How to Use the Analysis Services
In ArcGIS Online
National Water Model

Flows and anomalies

• Mid-range (10 days ahead)
• Short-range (18 hours ahead)
• Velocity estimate added
• New, more scalable architecture
What is Arc Hydro?
“Provide practical GIS framework for development of integrated analytical systems for water resources market.”
Brief History

1999 – 2002

- Project to demonstrate geodatabase capabilities in water resources.
- Worked with Dr. David Maidment at the University of Texas.
- Focused on the Arc Hydro Data Model.
- Released in 2002 as a data model, a toolset, and an Esri Press book (Arc Hydro).
 - Initial set of ~ 30 tools (8.3) developed by Esri (PS) as a complement to the data model.
Brief History

Since 2003:

- **Arc Hydro tool development through projects.**
 - This added ~300+ tools over the years.
- **Tool maintenance** (version updates, move to Pro, etc.).
- **User support** (Web pages, GeoNet, response to emails, etc.).
 - https://community.esri.com/community/gis/solutions/arc-hydro
- **Training classes** (managed as standard Esri training and are delivered by PS).
- **Arc Hydro Groundwater**
 - Added in 2007.
 - Aquaveo provides extensions (fee) and support
Arc Hydro Tools Summary

Functionality Grouping

Foundation

- Administration
 - ID mgmt.
 - QA
 - Configuration

- Terrain preprocessing
 - Streams
 - Sinks
 - Flow patterns

Living Atlas

- Watershed delineation
- Downstream tracing
- Floodplain delineation

Customer Specific

- Nebraska DNR
- USFS GRAIP-Lite
- Illinois DNR

Scientific model integration

- HEC-HMS
- HEC-RAS
- ICPR

General implementation domains

Watershed delineation

- Watershed
- Sub-watershed
- Batch processing

Floodplain delineation

- Streams
- Lakes
- Forecast

Watershed characterization

- Pollutant loads
- Impervious areas
- Runoff characteristics

Stormwater

- Built infrastructure
- Surface drainage
- Connectivity
Arc Hydro Tools Key Concepts

- Build foundation for **analytical** capabilities
 - Start with landscape (e.g. terrain)
 - Identify drainage patterns
 - Define necessary characteristics
 - Define node-link representation
 - Support scientific/engineering models (I/O)

- While maintaining spatial and referential integrity (collocation, IDs, vector/raster references, remove redundancy in processing, …)
Product Capability Summary

• “No fee” downloadable offerings:
 - Data model
 - Tools
 - Workflows
 - Documentation
 - Available now:
 - ArcMap tools - all versions up to 10.7.1
 - Pro tools - all versions up to 2.4
 - Web services in the Living Atlas

• Optional offerings:
 - Training (paid)
 - Consulting (paid)

- Average of 1000 views per month of the download page
Arc Hydro Data Model and Tool Development General Approach

Water Resources

Arc Hydro

Floodplain

WQ

Permitting
Arc Hydro Users

- Fed / State / Local Government
 - USGS, FEMA, NWS, EPA, …
- Water Management Districts
- Defense / Intelligence
- Private consultants
 - Engineering companies
 - Hydro professionals
- Anyone involved in water resources / environmental activities
Arc Hydro Adoption Over the Past 15+ Years

- Arc Hydro: ~ 1,000 views/downloads per month
- Projects: ~ 100 projects for Arc Hydro-related work
- Training: over 1,600 customers reached through ~120 classes for Arc Hydro and H&H on 4 continents

2019 Projects (PS)
- NWS/NWC – NWM-based floodplain modeling
- EPA/USFS – GRAIP Lite (watershed scale erosion assessment)
- Missouri DNR – modernization of tracing and characterization services
- Novel-T (Switzerland) – custom training
Arc Hydro Pro Development Plan and Status
Key Driver

- Enable our users to efficiently use Arc Hydro within their organization and workflows
 - Simplify
 - Streamline
 - Advance
 - Document
 - Disseminate
 - Engage
Arc Hydro Tools Summary

Pro Implementation Status
Baseline Critical Functionality

Network dependency
Green = None
Light Yellow = Some
Red = Show stopper

- ID mgmt.
- QA
- Configuration

- Streams
- Sinks
- Flow patterns

- Watershed delineation
- Downstream tracing

- Watershed delineation
- Sub-watershed
- Batch processing

- Watershed characterization
- Pollutant loads
- Impervious areas
- Runoff characteristics

- Stormwater
- Built infrastructure
- Surface drainage
- Connectivity

- Nebraska DNR
- USFS GRAIP-Lite
- Illinois DNR

- HEC-HMS
- HEC-RAS
- ICPR

- Customers Specific

Scientific model integration

Living Atlas
Arc Hydro Pro Transition Activities

• Design
 - GN replacement tools (Trace Network).
 - Updated workflows.

• Tool categories
 - Terrain preprocessing.
 - Floodplain delineation.
 - Watershed delineation.
 - Watershed characterization.
 - Modeling / model integration.

• Documentation
 - Tools.
 - Processes.

• Programming
 - Python first
 - Open source
 - Systematic programming framework

• Testing
 - Tools.
 - Processes.
 - Release.

• Release
Arc Hydro Pro Release Plan Overview
Baseline Critical Functionality – 244 tools

- Activities synchronized with core development teams.
 - Trace Network, Spatial Analyst
- Beta release – February 2020 (FedUC)
- Full release – July 2020 (UC)
- Continuing maintenance and transition of other Arc Hydro tools not in the Baseline Critical Functionality release – continuous past July 2020
Arc Hydro Applicability Matrix

<table>
<thead>
<tr>
<th>Industry \ AH</th>
<th>Watershed delineation and character.</th>
<th>Stormwater</th>
<th>Wetlands</th>
<th>Hydrology</th>
<th>Hydraulics</th>
<th>Flood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AEC</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Facilities management</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local/state government</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mining</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Environmental</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Emergency response / public safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Arc Hydro Demo
Presenter(s)
What’s New with Arc Hydro
What’s New With Arc Hydro

- Stormwater (not so new – already in Pro)
- Wetlands identification model (already in Pro)
- Floodplain analysis and tie into forecasting (NWM) and impact analysis
Stormwater Concepts

- Two “systems” in play:
 - Collection system – takes overland flow and places it into the conveyance system.
 - Conveyance system – takes the collected water and moves it through
- Overland flow does NOT interact with pipes directly

- These systems interact through open channels and inlets.
Stormwater delineation - pipe

Global (in the pipe)

Local (same as land)
Stormwater delineation - stream

Global

Local
Wetlands Identification Model

- Machine learning approach to wetlands identification using geomorphological characteristics based on Lidar-derived DEM
Wetlands Identification Model

71% of wetland area detected

31% of wetland area detected

High detection of depression-like features that are not wetlands*
Flood Impact Forecasting

WHEN:
National Water Model

WHERE:
Arc Hydro Tools

WHO:
Local County GIS Data
WHO: Flood Impact Short Range Forecast Ops Dashboard

Affected Population: 1,244
Residential: 482
Commercial: 108
Industrial: 4
Other: 39

Forecast Time: 4/26/2023, 8:00 AM
Forecast End: 4/27/2023, 1:00 AM

Dave Sekkes, Chester County EOC
Getting Involved
Getting involved

- Arc Hydro GeoNet: https://community.esri.com/community/gis/solutions/arc-hydro
- archydro@esri.com
- ddjokic@esri.com

- Soon to be released industry pages for Arc Hydro and water resources
Work in Progress

• Goal for Pro 2.6 (summer 2020)
 - Completion of code transfer for baseline capability
 - Model integration (HEC-RAS, HEC-HMS, ICPR4)
 - Floodplain and impact assessment tools and workflows
 - Documentation, documentation, documentation
 - Getting started with Arc Hydro
 - Domain specific workflows, docs

• Prioritization of further updates
 - Talk to us!!!
Questions?
Print Your Certificate of Attendance

Print Stations Located in 150 Concourse Lobby

Tuesday
- 12:30 pm – 6:30 pm
 - Expo
 - Hall B
- 5:15 pm – 6:30 pm
 - Expo Social
 - Hall B

Wednesday
- 10:45 am – 5:15 pm
 - Expo
 - Hall B
- 6:30 pm – 9:30 pm
 - Networking Reception
 - Smithsonian National Museum of Natural History
Please Share Your Feedback in the App

Download the Esri Events app and find your event

Select the session you attended

Scroll down to “Survey”

Log in to access the survey

Complete the survey and select “Submit”