Apache Corporation uses ArcGIS as a core technology for its oil and gas exploration and production (E&P) and business operations. In 2011, the team launched Apache GeoPortal, a framework that allows staff to access and share GIS resources on a variety of computing platforms and mobile devices.

The portal’s architecture is Apache’s technical approach to disseminating GIS resources to all its regions worldwide. This architecture uses Esri’s ArcGIS, Silverlight-based web maps; and an internally developed Silverlight-based website that serves Apache users looking for maps, spatial data, satellite imagery, and other GIS resources. Apache GeoPortal is an intranet solution that is only accessible by employees and contractors.

Apache GeoPortal is a distributed architecture. It has been implemented in Apache's Houston, Texas, office and is accessed by offices around the world. The company is now setting up portal frameworks in its Argentina and Australia offices. As individual regional offices come on board, they will have the same architecture along with their locally generated data and services from spatial data engines and ArcGIS. These self-contained systems link back to the central data server in Houston. Currently, the tie is through spatial data management scripts that keep the databases in sync. In the near future, many of the spatial layers will be synchronized through replication.

The GIS team is using ArcGIS API for Silverlight to build workflow apps for the company. This platform is a powerful tool for creating and delivering rich Internet and intranet map applications, all hosted via a browser. No installation is required, since Silverlight includes a lightweight version of the .NET Framework CLR (CoreCLR) and the runtime. “This combination provides more opportunity for our users to easily share and access content,” explained Carlos Sosa, Apache GIS architect. “Lightweight APIs form a large part of the services we deploy on GeoPortal. Our people really like them because they are fast and easy to use.”

Apache has taken this one step farther by bundling the workflow with spatial layers in the Silverlight map viewer in a new concept that the company’s developers call Map Apps. It allows users to quickly execute a business process that requires a map. Workflows are tailored to the map layer and can include custom thematics, search, and dynamic links to external data.

Among the company’s many apps is one that generates a bubble map of wells indicating petroleum or gas production. One can easily see wells that are producing and those that are not. Another Map App, which is updated daily,
Contents

Cover

1 Portal Delivers Maps and Lightweight Apps

Esri News

4 ArcGIS for SharePoint
4 Uncover the Business Value of GIS at the Esri International User Conference
5 Esri Career Opportunities
5 Esri on the Road

Solutions

6 Evaluating Disturbance of E&P Access Roads
8 Lightning Strike Analysis Shocks Oil Field Engineers

Partner Corner

10 Esri Partners Make a Difference
11 Esri Petroleum GIS Conference

Esri News for Petroleum is a publication of the Business Solutions Group of Esri.

To contact the Esri Desktop Order Center, call 1-800-447-9778 within the United States or 909-793-2853, ext. 1-1235, outside the United States.

Visit the Esri website at esri.com.

View Esri News for Petroleum online at esri.com/petroleum or scan the code below with your smartphone.

Advertise with Us

E-mail ads@esri.com.

Submit Content

To submit articles for publication in Esri News for Petroleum, contact Geoff Wade, industry solutions manager, at gwade@esri.com or Barbara Shields, editor, at bshields@esri.com.

Manage Your Subscription

To update your mailing address or subscribe or unsubscribe to Esri publications, visit esri.com/manageyoursubscription.

International customers should contact an Esri distributor to manage their subscriptions.

For a directory of distributors, visit esri.com/distributors.

Circulation Services

For back issues, missed issues, and other circulation services, e-mail requests@esri.com; call 909-793-2853, extension 2778; or fax 909-798-0560.

Copyright © 2012 Esri. All rights reserved. Printed in the United States of America.
When the lightweight ArcGIS APIs came out, we first went with Flex and then quickly changed to Silverlight.

"When the lightweight ArcGIS APIs came out, we first went with Flex and then quickly changed to Silverlight."

Bruce Sanderson, Apache GIS Team Manager
ArcGIS for SharePoint

ArcGIS for SharePoint provides a robust set of configurable mapping components that allow you to visualize and analyze your business data on a map in Microsoft SharePoint. No programming is required to quickly design and deliver a compelling visual representation of your information assets.

What You Can Do

ArcGIS for SharePoint will change the way you visualize and interact with your data:

• Create, edit, and share dynamic and interactive maps of your business data.
• Interact with tabular data and the map in SharePoint.
• Use free online basemaps from ArcGIS Online or ArcGIS for Server.
• Geographically enable SharePoint list and document library items so they can be mapped.
• Configure map pop-up windows, heat maps, and clustering.
• Find items within a specified distance of point features.

ArcGIS for SharePoint works with the ArcGIS system and is available to most Esri customers free of charge.

Learn more at esri.com/sharepoint.

Uncover the Business Value of GIS at the Esri International User Conference

Attend the Esri International User Conference (Esri UC) to discover how GIS adds value to oil and gas companies. Learn best practices that will show you ways GIS can help locate success in the dynamic petroleum market. Come to the Esri UC to improve your GIS, grow professionally, and be successful in your work. Meet GIS experts, industry professionals, and a community of users who can help you find the answers you need.

• Explore the business value of GIS for energy and pipeline.
• Discover GIS product innovations that help you meet your goals.
• See how others are using GIS to increase production and efficiency.

Learn more and register at esri.com/uc.

Esri International User Conference
July 23–27, 2012, San Diego, California
Esri on the Road

Mark Your Calendar

Esri Petroleum GIS Conference
April 30–May 2, 2012
Houston, Texas, USA
esri.com/pug

European Association of Geoscientists and Engineers
June 4–7, 2012
Copenhagen, Denmark
www.eage.org

Esri International User Conference
July 23–27, 2012
San Diego, California, USA
esri.com/uc

Petroleum User Group Meeting
July 24, 2012
San Diego, California, USA
esri.com/ucpetroleum

GIS for Oil & Gas Conference (GITA)
October 22–24, 2012
Houston, Texas, USA
www.gitaservices.org

European Petroleum GIS Conference
November 7–9, 2012
London, United Kingdom
esriuk.com/events

Clean Gulf
November 13–15, 2012
New Orleans, Louisiana, USA
www.cleangulf.org

Join Esri and help broaden the applicability of GIS within the wider petroleum sector.

- Account Executive, Environmental Petroleum (Houston, TX)—Execute account management strategies designed to facilitate the implementation of business relevant solutions within a portfolio of targeted accounts.
- Petroleum Industry Solutions Specialist (Redlands, CA)—Develop and execute specific industry marketing plans and programs to support sales, revenue, and user community development objectives.

Learn more about a career on our petroleum team and apply online at esri.com/petro.
Evaluating Disturbance of E&P Access Roads

By Chris W. Baynard, University of North Florida; James M. Ellis, Ellis GeoSpatial; and Hattie Davis, Artistic Earth

GIS impact study shows how E&P development and peripheral activities alter landscapes inside oil concessions.

E&P development in remote regions is often considered a catalyst for landscape change through the direct alterations created by infrastructure features, as well as the accessibility provided by roads. The construction, expansion, and improvement of transportation routes in isolated areas can attract newcomers and resource users who engage in illegal logging, poaching, commercial agriculture, and colonization. These actions can lead to larger-scale surface disturbances that may also affect indigenous territories and natural preserves. However, do these peripheral activities and outcomes always accompany E&P development, or can controlled access minimize landscape change? Secondly, when peripheral activities do occur alongside E&P development, how do they contribute to landscape alterations inside oil concessions?

To answer these questions, remote-sensing and GIS techniques were used to calculate landscape infrastructure footprint (LIF) metrics, which link visible infrastructure features to surface disturbance. This “accounting-from-above” approach helped determine the spatial relationship between E&P development in remote regions and land use/land cover (LULC), soils, protected areas, and colonization zones for the year 2000. The study area included four neighboring oil blocks in eastern Ecuador’s tropical forest, displaying three types of E&P development: public access, controlled access, and roadless.

Processed and enhanced Landsat imagery was used to create subset images of the concession blocks with different band combinations and to produce an LULC map, which was compared to a map by the Ecuadorian remote-sensing agency CLIRSEN. Roads were selected to represent infrastructure features and were updated using ArcGIS and expert knowledge. Google Earth (high-resolution) imagery was used to clarify questionable roads. GIS tools (such as clip, merge, buffer, dissolve, union, and intersect) proved invaluable in calculating various metrics associated with landscape disturbance including length of roads, types of access (public access, controlled, and none), road density, direct effects, and edge effects (core areas and number of rivers crossed). (See figure 1.)

Access Type and Oil Block

• Public access: Block O had the longest network of E&P roads (all designated as public access by the government), fertile soils, and some developed areas (located inside a government-designated colonization zone). Development unrelated to E&P activities occurred over several decades, and the road network became 3.5 times more dense.

• Controlled access: Blocks 14 and 16 were developed in the 1990s with one central E&P road, where access was controlled at the entrance to Block 14. Indigenous groups and energy company workers were the only people allowed to enter the area. Since other roads were few in Block 14 and not present in Block 16, the E&P network was the dominant one. The amount of agricultural conversion in these two blocks was quite small, less than 2 percent.

• Roadless: Block 10 was developed with the use of helicopters. No roads were detected with Landsat imagery. This block retained...
98 percent of its forests. Interestingly, agricultural land was found in all concessions, but some of this was linked to areas adjacent to rivers whose banks have historically provided fertile soils for farming.

Disturbance Metrics

- **Road density**: A factor in landscape fragmentation, which was rated on a scale, ranges from 0.1 in remote regions to 40.0 in urban locations. In Block O, the E&P road density rating was 0.17, and the density rating of other roads was 0.63, totaling 0.80, which is the upper density limit on the ability for some areas to support large mammals. In Block 14, the E&P road density was 0.02, and for other roads 0.01, totaling 0.03. Block 16’s E&P road density rating was 0.04. Block 10, with no roads detected, had no road density measures. (See figure 2.)

- **Direct effects**: The amount of land directly disturbed by the presence of road and related infrastructure features. All roads were assigned a width of 15 meters for direct disturbance. E&P roads that included additional alterations associated with rights-of-way and pipelines, well pads, and central production facilities were assigned a width of 50 meters for disturbance, three times the area assigned to other roads.

- **Edge effects**: Transition zones of open land to forest where potential ecological disturbance may extend outward from infrastructure features. E&P roads were assigned a 100-meter edge effect width, and other roads were assigned a 65-meter edge width. Once determined, these edge effects were masked. Doing so revealed the remaining patches of land. These core areas were measured. (See figure 3.)

- **Rivers crossed**: Roads that cross over rivers indicate potential disturbance to aquatic ecosystems. Block O, with its dense road network, was most affected; however, the E&P road network river-crossing points in this block were less extensive than those of other roads. In Block 14 and Block 16, river crossings were linked to one E&P road, and Block 10 had no detectable river crossings.

Conclusion

Block O, the oldest concession, showed the greatest land surface disturbances. These were primarily linked to the additional and denser infrastructure network resulting from activities peripheral to E&P such as agricultural conversion and colonization. The remaining blocks, with controlled access and roadless E&P development, did not exhibit these surface disturbances. These findings highlight the importance of controlling road access if land conservation is a priority. (See figure 4.)

The accounting-from-above approach used in this study advances E&P environmental performance standards through the adoption of geospatial technologies with metrics and standardization. It also underscores that understanding, planning, modeling, monitoring, and mapping the E&P physical footprint, as well as peripheral economic activities, are very important tasks for E&P companies to pursue in remote regions and developed landscapes.

For more information, contact Chris W. Baynard at cbaynard@unf.edu or baynardspatial@gmail.com, James M. Ellis at jellis@ellis-geospatial.com, or Hattie Davis at artisticearth@comcast.net.
At the La Circa Infantas petrol field in El Centro, Santander, Colombia, lightning is a major problem. Colombia ranks second to the Democratic Republic of the Congo in annual lightning strikes, according to NASA’s Global Hydrology and Climate Center. In the past two years, La Circa Infantas alone attracted 30,000 lightning strikes.

“Lightning affects our electrical distribution network, which feeds the engines that operate the wells, causing the terrible effects of production loss, equipment damage, and uncertainty in the network design,” said Luis Alejandro Zorrilla, an electrical engineer with Occidental Oil & Gas.

Occidental operates La Circa Infantas through a joint venture contract with Ecopetrol S.A. La Circa Infantas was the first petrol field in Colombia, with its first well, Infantas 2, completed in April 1918.

“This historic field has all the great challenges of a field built by many companies,” Zorrilla added.

The oil field’s electric distribution network is made up of 3,000 poles, about 300 miles of electric line, and 1,000 engines. After more than 90 years in operation and many changes in management, the electric network was suffering huge inefficiencies. Data was duplicated, incomplete, old, or inaccurate.

Complicating matters was the fact that the electric infrastructure undergoes daily changes, with new lines and poles and new electric and communication equipment due to new wells. The whole process demands planning, design, connection, and reporting—a set of tasks highly dependent on accurate data.

By contrast, the information about the wells—their geographic location, maintenance history, construction date, and more—was concentrated in a GIS.

“The well GIS helps our team develop all our engineering activities. We saw a need to build a GIS for the electric network as well,” Zorrilla said. “Our first step in developing an electric network GIS was to spatially enable the information related to the load on our electric network.”

Next, the team created a data model that reflected the entire workflow, from work force to energy management. The data required in the workflow was described in the data model.

Once the data model was constructed, the distribution network inspection project began. The goal was to update and unify all geodata available. With a geodataset in hand, workers modeled the electrical GIS geodatabase and developed the system in ArcGIS.

Improving the Design

Electric network pole designs were fashioned based on average annual lightning density and current amplitude data. The designs were researched and studied. Nevertheless, every lightning storm managed to identify faults in the design. Zorrilla reported approximately 600 faults in the distribution network circuits that feed the field in one year.

“The questions were obvious,” Zorrilla said. “Why are the designs failing? How can we improve the designs?”

When the engineers took a closer look at the annual fault data, a clue emerged. About 90 percent of the failures were caused by lightning discharges and flashovers. The shielding angle did not protect the lines.
They would need a more specific and accurate measurement of the lightning density and current amplitude.

Colombia’s national lightning data system has 50 sensors to determine the location and electric characteristics of lightning. La Circa Infantas’ energy management department requested this data. The electrical studies department developed a grid within the GIS to record the lightning’s extent, count, and average amplitude per square mile.

“When we overlapped the electrical GIS with the lightning density and current amplitude grid, we saw an amazing relationship between the failures and the critical areas,” Zorrilla explained. “The lightning data visualized as a grid, with the correlation of the two variables—density and current amplitude per square mile—helps us understand locally why the pole designs failed.”

With the help of the grid and the electrical GIS that was built on ArcGIS, engineers can approach every pole design according to the pole’s location and its consistency with the geodataset. The grid is colored on a blue-to-red scale, with red signifying critical. An additional benefit is that engineers can prioritize the correction of the designs and plan maintenance based on the critical areas.

“A deep understanding of the lightning situation is now available,” Zorrilla said. “Better decisions are being made. Design can now be standardized, depending on pole location and similar features, in lieu of a unique design for each pole.”

Now that the electrical GIS is established and integrated with other corporate systems, La Circa Infantas is enjoying the benefits. New geoplications, such as the grid, are under way. And there is a boost in overall performance of the energy management department’s daily work.

For more information, contact Luis Alejandro Zorrilla, electrical engineer, Occidental Oil & Gas, at Alejandro_zorrilla@oxy.com.
Esri Partners Make a Difference

CartoPac Solutions for Field and Office

The energy industry today faces growing regulatory, safety, and maintenance requirements related to field assets. CartoPac’s Spatial Asset Management solution helps address these requirements by providing a unified end-to-end solution for the office and the field built on the Esri ArcGIS for Server platform. It provides highly accurate GPS mobile data collection, management tools, and access to critical information for the entire organization. CartoPac enables superior field asset decisions while significantly reducing operating costs.

Using CartoPac’s mobile solution, accurate field asset data can be efficiently collected and rapidly shared across the enterprise for fast in-field decision support. Workflows and processes can be configured and automated, streamlining communication, improving productivity, and enforcing data standards.

WebOffice is the office side of CartoPac’s solution. It maximizes the value of your GIS system by providing superior editing, visualization, and reporting functionality, along with role-based user management. Also built on ArcGIS for Server technology, WebOffice makes GIS information easy to access and use. WebOffice provides web-based intuitive interfaces, fast and easy queries, advanced editing and feature construction, and easily configurable reporting.

With CartoPac’s Spatial Asset Management solution, you will know exactly what you have and where it is. You will know your assets—with confidence!

Coler & Colantonio, Inc.

Coler & Colantonio, Inc., is an engineering, technology, and consulting services firm that has been serving the energy industry for more than 25 years. We are also a leading supplier of geospatial-based pipeline asset and operations management solutions. Our industry-driven Intrepid 3.0 Asset Management Software—built by “pipeliners,” for “pipeliners”—brings to the pipeline industry a suite of openly architected geospatial solutions that fully leverage the power of Esri’s ArcGIS for Server family. They allow our many clients to manage the full life cycle of their pipeline assets within the geodatabase and provide full support for a number of industry data models including APDM, PODS, and PODS Spatial. Our team of pipeline subject matter experts can demonstrate how our technology and these integrated solutions can support your planning, engineering and design, integrity and risk management, DOT compliance management, right-of-way management, and field operational needs. They can assist you with compliance requirements assessment and prioritization, work process design and/or reengineering, and enterprise geospatial data management strategies.

Geocortex for Web GIS Applications

Geocortex software by Latitude Geographics helps people succeed with web-based geography by enabling them to get things done in the real world. Our petroleum industry customers use Geocortex to rapidly build web GIS applications and enable end users to make critical operational decisions.

Major industry processes, such as exploration, extraction, refining, transportation, and distribution, are intrinsically spatial, and accessing spatial data through an intuitive user interface can greatly increase productivity. Geocortex Workflow provides a simplified interaction with the application, providing clear direction to reach a desired goal. Workflow is designed to quickly meet specific user needs and model a complex process into a very few steps. Geocortex extends the value of ArcGIS for Server software so that you can distribute geospatial information to a broader range of GIS and non-GIS users.

Geocortex also enables a Spatial Application Infrastructure, allowing companies to do more, faster, at less cost and risk. This approach makes it easy to create and maintain applications while ensuring a positive web-based GIS experience. Best of all, companies effectively future-proof their ArcGIS investments by readily accommodating technology change over time.

In 2010, Latitude Geographics was recognized as an Esri Worldwide Partner of the Year.

Visit www.geocortex.com/customers for more information.

IHS

IHS geospatial knowledge integrates comprehensive energy, defense, risk, and security spatial data into a single view.

To learn more, send a note to Jenny Salinas at jenny.salinas@ihs.com.

Visit www.geocortex.com/customers for more information.

IHS

IHS geospatial knowledge integrates comprehensive energy, defense, risk, and security spatial data into a single view.

To learn more, send a note to Jenny Salinas at jenny.salinas@ihs.com.

New Century Software

Pipeline systems present a unique set of operational and regulatory challenges. However, through efficient and effective management of their GIS, operators can gain significant competitive advantages. New Century Software’s professional services team has converted over 300,000 miles of pipeline data from a variety of sources, such as CAD, paper maps, shapefiles, and spreadsheets. Our goal is to deliver clean and consistent data, along with accurate centerlines that will enhance operations in areas such as one-call, right-of-way management, new construction planning, leak reports/repair, and integrity management. Our products are tailored to help oil and gas operators increase the accuracy and integrity of GIS pipeline data, including pipeline facilities, gas distribution, gas transmission pipelines, gathering lines, hazardous liquid pipelines, new construction, offshore lines, and production lines.

New Century Software partners with clients to develop the data management and the GIS technology needed to meet their business requirements.

Learn more about New Century Software at www.newcenturysoftware.com.

Petris

Petris is a leading supplier of global data management solutions and geosciences applications to the energy industry. Founded in 1994 and with over 500 clients throughout the world, Petris leverages its insight, experience, and knowledge to design technology that integrates information from the various E&P data stores, including seismic, borehole, production, drilling, and pipeline to continually enable better decision making across domains.

Petris uses Esri’s ArcGIS mapping and geospatial features and leverages web technologies in several products, such as PetrisWINDS Enterprise, DataVera, and OneCall, to provide oil and gas companies with an easy way to centrally access and manage vital information.

Esri Petroleum GIS Conference

Attend the Esri Petroleum GIS Conference April 30–May 2, 2012, at the convention center in Houston, Texas. See how GIS can help you secure your company’s future in the energy industry. This conference will help you expand your knowledge of GIS technologies to make you more efficient, while meeting the demands of corporate consumers. See how people are using GIS:

- Imagery innovations to investigate terrains
- Geologic modeling to assess energy resources
- Analytic tools to evaluate resource potential

Register today at esri.com/pug.

Thank You
Petroleum Conference Sponsors

Platinum
geoLOGIC systems
IHS

Gold
CartoPac
Coler & Colantonio
Eagle Information Mapping

Geocortex
GeoFields
GLOBAL Risk Solutions

Neuralog
NEW CENTURY SOFTWARE
PETRIS

Social
PETROSYS
petroWEB
TeachMEGIS.com

DigitalGlobe
Valtus
ArcGIS online… cloud GIS… mobile GIS… They all add up to one conclusion: this is not the year to miss the Esri International User Conference (Esri UC). This is where your ideas come together to shape the future of GIS.

Join us in San Diego, California, to discover the next generation of geospatial technology for your organization. Get in-depth, hands-on training at preconference seminars July 21–22.

Register online at esri.com/ucfedideas.

Esri International User Conference
July 23–27, 2012 | San Diego Convention Center

Copyright © 2012 Esri. All rights reserved.